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Abstract
An algorithm is derived to compute the natural frequencies of a simply-supported open circular cylindrical
roof shell based on the Goldenveizer-Novozhilov shell theory. The algorithm is implemented as a computer
program, and the results obtained are verified using the results that have been previously reported. The
natural frequencies computed using the analytical method is used to verify the accuracy of solutions obtained
from finite element analysis using ABAQUS, ANSYS and SAP2000, using different element formulations and
mesh sizes. It is observed that the the natural frequencies computed using the finite element programs are
mostly in close agreement with the analytical solution at lower modes, but tend to drift away with increasing
mode number, and this can be corrected by using a finer mesh and higher order elements. It is also observed
that using a coarse mesh can result in severely inaccurate estimates of the free vibration frequencies. The four-
noded linear shell elements were found to have large errors in computed natural frequencies in comparison to
quadratic elements, and therefore the use of such elements is not recommended for the dynamic analysis of
roof shells.
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1. Introduction

Roof shells have shown potential to resist extreme
loading during earthquakes. Shell roofs covering large
spans have rarely been found to have suffered damage
due to earthquakes. The high structural efficiency of
shells allow them to be very thin, and as the dynamic
forces due to earthquakes is proportional to the mass,
the forces acting on shell structures is also smaller in
comparison to other structural systems. The high
stiffness of shell roofs also means that the natural
frequencies are higher than the frequency content of
most earthquakes [1, 2]. Good performance of thin
concrete shells under earthquake loading, along with
their efficient use of possibly costly materials, makes
them an economic option for developing countries in
regions with high seismic activity.

In order to accurately perform the dynamic analysis of
roof shells under earthquake loading, it is necessary to
determine the natural frequencies and mode shapes of
the shell. The natural free vibration frequencies and
mode shapes provide a good insight on the behavior
of the structure under dynamic loads. Analysis for

earthquake loading is often carried out using the modal
response spectrum method, which is popular because
of its computational efficiency and is recommended
for use by most seismic codes around the world[3, 4].
Researchers have shown that a large number of free
vibration modes need to be considered in order to meet
the minimum requirement of 90% mass participation
found in most seismic codes[5].

The finite element method is currently the preferred
method for the dynamic analysis of roof shells. The
results obtained from finite element analysis tends to
the analytical solution as the element size is reduced.
However, the use of finite element method for roof
shells should be based upon a sound understanding of
the shell theories and the analysis methods being used,
and can lead to highly inaccurate results if not used
carefully. Comparing the finite element solutions with
the solutions from classical shell theories for simple
geometries can help increase confidence in the use
of finite element programs, while helping to identify
potential sources of error.
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2. Analytical Modeling of Roof Shell

2.1 Derivation of Equations of Motion

The calculation of natural frequencies and mode
shapes of an open cylindrical roof shell is carried out
using a semi-analytical method based on the works by
Leissa [6]. The Goldenveizer-Novozhilov shell theory,
which is a moment theory applicable to both shallow
and deep shells has been used as the governing shell
theory for the development of the equations of motion.
This shell theory can be derived directly by
substituting the compatibility and constitutive
relationships into the equilibrium equations for an
open cylindrical shell, and then using Novozhilov’s
assumption that Mxy = Myx = H and
S = Nxy−H/R2 = Nyx−H/R1[7].

Figure 1: Shell Geometry

The equations of motion were derived for an open
cylindrical shell as shown in Fig. 1, based on the
method proposed by Leissa [6], by substituting the
body forces with inertia terms. The natural
frequencies and mode shapes are extracted by
substituting displacement functions in the form of a
double trigonometric series, as suggested by Leissa[6]
and Ostovari-Dailamani[8].
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Here, A, B and C are the mode shape amplitudes and
ωi j is the natural frequency. The integers i and j are
the number of half waves along the circumferential
(Y) and longitudinal (X) directions respectively. The
displacement functions satisfies the boundary
condition of a simply-supported cylindrical roof shell,

Nx = v = w = Mx = 0 along x = 0,Lx

Ny = u = w = My = 0 along y = 0,Rφ
(2)

Using the displacement functions (1) for mode (i,j),
allows the free vibration equation to be represented as
the following symmetric standard eigenvalue problem.
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The elements of the matrix [K] are given by
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Where, λ =
jπR
L
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iπ
φ

, k =
h2

12R2 and h is the

thickness of the shell.

The solution of the eigenvalue value problem in
equation (3) is the non-dimensional frequency
parameter Ωi j and the mode shape coefficients A, B
and C for the mode (i,j). The non-dimensional
frequency parameter Ωi j can be expressed in terms of
the circular natural frequency ωi j as

Ωi j =
ρ(1−ν2)R2

E
ω

2
i j (5)
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2.2 Development of Algorithm and Computer
Program

A computer program was developed for the
determination of natural frequencies and mode shapes
through the solution of this eigenvalue problem, for
any mode (i,j). The program was developed using the
C++ programming language, and the Jacobi method
was used for the solution of the symmetric eigenvalue
problem due to its simplicity and efficiency [9]. The
flowchart for the program is given in Fig. 2.

Start

Input Shell Geometry 
and Material Properties 

Lx, Ly, φ, R, E, ρ, ν

Input Requested 
Mode (i,j)

Pre‐calculate values
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2)
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r=r+1

Is r = 3

End

No
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Output ωr , Ar,  Br,  Cr

Figure 2: Flowchart for the calculation of natural
frequencies and mode shapes.

The solution of the eigenvalue problem for a pair of
half-wave numbers (i,j) results in three values of ωi j

and three sets of mode shape coefficients, one each for
the radial, circumferential and axial modes.

Because the each mode (i,j) can be computed
independent of all other modes, this algorithm can
easily take advantage of parallel processing for
reduced computation time. The solution of each mode
(i,j) only requires the computation of the eigenvalues
and eigenvectors of a 3×3 matrix so this algorithm is
very efficient for computing a large number of modes.

2.3 Validation of the Algorithm

The natural frequencies calculated using the computer
program is verified using the results reported by
Kuneida et. al. [10], which were also used by
Ostovari-Dailamani[8] for verification of the
algorithm.The results have been reported for a simply
supported panel with R/h=500, Ly/Lx = 0.5 and
φ = π/2. The eigenvalues

√
Ω have been reported for

18 circumferential half waves and 9 axial half waves.
For the verification, a shell having Ly = 10m,
Lx = 20m, R = 10/

√
2m was analysed. The

non-dimensional frequency parameter
√

Ω calculated
using the computer program were found to be
identical to the reported results.

The results were also verified using the shell geometry
studied extensively by Ostovari-Dailamani [8], with
Lx = Ly = 104.8m, R= 104.8m, R/h= 500, ρhR/E =
10−6s2.

Figure 3: First mode of shell having
Lx = Ly = 104.8m, R = 104.8m, R/h = 500,
ρhR/E = 10−6s2. (i,j)=(4,1), f=0.7981 Hz
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3. Finite Element Analysis

The Finite Element Method (FEM) is currently the
most commonly used method for the static and
dynamic analysis of shell structures. The method is
based on the sub-division of a field into a finite
number of elements connected by nodes in order to
approximate the solution of a boundary value
problem.

In the finite element method, the natural frequencies
and mode shapes are calculated as the solution of the
generalized eigenvalue problem

[K]{φi}= ω
2
i [M]{φi} (6)

where [K] is the global stiffness matrix, [M] is the
global mass matrix, {φi} is an eigenvector and ω2

i is
the eigenvalue[9]. Many methods are available for the
solution of this eigenvalue problem, of which the
Lanczos method and the subspace iteration method
are the ones most commonly implemented in finite
element programs. The Lanczos method is suitable
when a large number of modes are required, whereas
the subspace iteration method performs much better
when only a small number of modes are needed, as in
the case of framed structures. Quadrilateral shell
elements can be used to discretize singly curved
shells, and is recommended for use in the analysis of
cylindrical shells [8].

3.1 Shell Element Formulations

Many different types of finite elements have been
formulated by researchers, which have been
implemented and are available for use in commercial
software packages. As it is observed in this study, the
choice of element greatly affects the accuracy of the
solution.

SAP2000 The shell element used in SAP2000 is a
simple element formulated as a combination of a
plane stress element to model membrane action and a
flat plate element to model bending. According to the
CSI Analysis Reference [11], membrane behavior
uses an isoparametric formulation that includes
translational in-plane stiffness components and a
”drilling” rotational stiffness component in the
direction normal to the plane of the element[12].

The four-node quadrilateral element used in this study
has 6 degrees of freedom per node, forming a 24×24
stiffness matrix. The CSI Analysis Reference [11] also

states that the four nodes need not be coplanar, and the
twist is accounted for in the program by considering
the angle between the normals at corners.

ABAQUS The element library of ABAQUS has
many different shell elements which can be used for
meshing [13]. Among the different elements that are
available, Ostovari-Dailamani [8] recommends the use
of the S8R5 shell element, which is a conventional
8-noded reduced integration shell element based on
the Koiter-Sanders shell theory for thick shells, which
can be used for static or dynamic analysis. The
element has 5 degrees of freedom at each node, with
two translational components and three rotation
components. The analysis is also carried out with a
four noded S4 element for comparison.

ANSYS ANSYS allows selecting the shell element
order as either linear or quadratic. The linear option
uses the SHELL181 element, which is a four-noded
element with 6 degrees of freedom per node, whereas
the quadratic option uses the SHELL281 element,
which is an eight-noded element, also with 6 degrees
of freedom at each node[14].

During the study, the computation of 500 modes using
a 40×40 mesh in ANSYS using linear and quadratic
elements took 16 seconds and 25 seconds respectively.
The computation time is largely dependent on the
computer hardware used, but it was observed that a
solution using quadratic elements took around 1.5
times longer than by using linear elements.

4. Methodology

The following methodology was followed in this study.

1. The natural frequencies for the roof shell was
calculated using the computer program
developed. The number of half waves (i,j) was
taken between (1,1) and (100,100). The
frequencies were then sorted in ascending
order.

2. Finite element models were prepared in
SAP2000, ANSYS and ABAQUS, with meshes
of size 20×20, 40×40 and 80×80 elements.
Both linear and quadratic elements are used in
ANSYS and ABAQUS.

3. The finite element programs are used to
calculate the lowest 500 modes.
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4. The percentage error is calculated between the
finite element result and the analytical result for
each mode.

A reinforced concrete shell having the following
parameters is used for this study. The dimensions and
material properties were chosen to match with the
study by Michiels et. Al. [5].

• Modulus of Elasticity E = 21.5×109N/m2

• Poisson’s Ratio ν = 0.2

• Density ρ = 2400kg/m3

• Length Lx = Ly = 38m

• Rise/Span = 0.134

• Radius R = 38m

• Thickness h = 0.08m

• φ = π/3

5. Results

5.1 Analytical Solution

The fundamental natural frequency of the reinforced
concrete shell roof was calculated to be 1.4294 Hz,
when (i,j)=(4,1). The lowest modes are predominantly
out-of-plane modes. Mode 358 is the first in-plane
mode with a frequency of 36.069 Hz, which is beyond
the 33Hz limit specified in the IS 1893:2016 code for
seismic analysis[3].

The distribution of the natural frequencies with the
mode number is shown in Fig. 4. It should be noted
that the fundamental natural frequency is higher than
the frequency content of most earthquakes, which is
one of the reasons why roof shells have good
performance under earthquake loading.
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Figure 4: Free vibration frequencies of the cylindrical
roof shell calculated using the analytical method.

Table 1: Maximum error in finite element calculated
natural frequency compared to the analytical solution.

Mesh Element Max. Error % Mode
SAP2000 388.82 493
ANSYS S181 467.87 495
ANSYS S281 83.54 489
ABAQUS S4 504.93 495

20x20

ABAQUS S8R5 10.13 491
SAP2000 10.28 496
ANSYS S181 43.40 497
ANSYS S281 3.93 490
ABAQUS S4 46.06 497

40x40

ABAQUS S8R5 2.97 66
SAP2000 2.94 318
ANSYS S181 8.57 491
ANSYS S281 2.07 256
ABAQUS S4 8.86 490

80x80

ABAQUS S8R5 2.49 318

5.2 Comparison with Finite Element Analysis

The results from the analytical method were found
to closely agree with the finite element results when
8-noded elements and a fine 80×80 mesh was used.
The errors for the ABAQUS S8R5 element and the
ANSYS SHELL281 element, with an 80×80 mesh
was less than 2.5%. This further validates the results
obtained from the algorithm developed in this study.
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Figure 5: Comparison between the analytical and
finite element solution of the natural frequencies using
a 40×40 mesh.
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5.2.1 Effect of Mesh Size

Large errors were observed in higher modes when
using 20×20 mesh divisions.

The number of modes that can be computed with
finite element analysis is limited by the number of
degrees of freedom, which defines the size of the mass
and stiffness matrices. Most of the modes in the first
500 modes studied here are out-of-plane modes, and a
coarse mesh can only be used to compute a limited
number of them. This causes the finite element
programs to compute the in-plane modes instead,
which have a much higher natural frequency. This can
be clearly seen in the results obtained using a mesh
size of 20×20 with SAP2000 as shown in figure 6,
where the errors increase rapidly after mode 365. On
the other hand, using a higher order element such as
the ABAQUS S8R5 can provide acceptable results
even with a coarse mesh.

The results were found to be within less than 4% of
the analytical soluiton when using quadratic elements
with a 40×40 mesh, which is the number of mesh
divisions that has been recommended based on mesh
convergence studies[5, 8].

5.2.2 Effect of Element Type

The results obtained by using 8-node quadratic shell
elements were found to have the least difference to the
analytical solution.

The linear elements in both ANSYS and ABAQUS
performed poorly in comparison to the 8 node
elements. This is most likely due to the curvature of
the cylindrical shell, whose effect is not modeled
effectively when using 4 node plane quadrilateral
elements. The four noded element implemented in
SAP2000 considers a small amount of twist through
the angle between normals at the nodes, and was
found to perform better than the other four node
elements, especially with a finer mesh.

The accuracy of linear elements were found to increase
as the mesh was refined, and similar levels of accuracy
were observed in a 20×20 quadratic mesh and a 80×80
linear mesh. As it can be seen in figure 5, the results
obtained using linear elements overestimate the natural
frequencies, which would result in a smaller design
seismic load when designing using most seismic codes
such as IS 1893:2016[3].
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Figure 7: Error in FE computed natural frequencies
using 40×40 mesh
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6. Conclusions

A highly efficient algorithm was developed for the
calculation of natural frequencies and mode shapes
of an open circular cylindrical roof shell based on the
Goldenveizer-Novozhilov shell theory. The solution
calculated using the algorithm is free from errors due
to meshing and is only limited by the assumptions of
the underlying shell theory. The results were validated
using previously reported results.

The results from the analytical method are further
validated by the finite element solution obtained by
using a fine mesh of quadratic elements. However, it
is observed that the natural frequencies computed
using the finite element method can be very inaccurate
depending on the choice of element and the mesh size.
The errors also tend to be higher in higher mode
numbers.

Linear shell elements were observed to give
inaccurate estimates of the natural frequencies, while
providing minimal advantages over quadratic
elements in terms of computation time. Therefore,
quadratic shell elements should be preferred over
linear elements when performing dynamic analysis.
The use of linear shell elements which to not take the
curvature of the shell into account should be avoided.

It is also recommended to carry out a mesh
convergence study to determine the optimum mesh
size in order to avoid faulty results when performing
dynamic analysis of shells using the finite element
method.
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