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Abstract
Two dimensional laminar viscous steady flow of an electrically conducting fluid past a square cylinder placed in
magnetic field have been studied. Computational simulations have been performed for Reynolds numbers and
Hartmann numbers ranging from 1 to 200 and from 0 to 8 respectively for a fixed blockage ratio β = d/W = 1/8.
The magnetic induction method in magnetohydrodynamics (MHD) module of ANSYS Fluent solver has been
employed to compute the flow fields. The effects of transverse magnetic field on vorticity, streamlines and flow
coefficients such as drag and lift coefficients have been studied. Results show that the complete suppression
of vortex shedding can be achieved and establish a steady flow if a sufficiently strong magnetic field is applied.
The average drag coefficient is decreased from 1.3742 to 1.0069 with the increase in Hartmann number from
0 to 3.0 as long as the flow remains unsteady. For flows in the steady regime, the drag coefficient is found
to increase with the increment of Hartmann number. Similarly, the amplitude of unsteady lift decreases with
the increase in Hartmann number indicating the reduction in strength of shed vortices. A critical value of
Hartmann number for Reynolds number of 200 has been found to be 3.6 required for complete suppression of
the vortex shedding.
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1. Introduction

The flow over bluff bodies is a classical problem in
fluid mechanics which has been extensively studied
due to practical engineering applications [1] [2] [3]
[4]. Some of the practical engineering applications
include heat exchangers, marine risers, road vehicles,
pipelines, cooling towers etc. Owing to the practical
applications in the real world, there have been
massive numerical and experimental studies on the
flow around such bodies for over a century . Such
bodies may be circular, square, rectangular or
triangular in shape. The flow around such bodies,
irrespective of their geometry, present many
similarities in terms of wake structure at different
Reynolds numbers [5]. At very low Reynolds
numbers, a creeping flow mechanism is observed
where the flow remains attached and takes the shape
of the cylinder surface. As the Reynolds number (Re)
increases, the flow separates to form a closed steady
recirculating region consisting of symmetric twin
vortices known as ‘recirculation bubble’ behind the

body. Such flow structure is observed for Re ≤ 40-50.
At higher Reynolds number, the flow becomes
unsteady and vortices shed alternately from the top
and bottom region of the body leading to the
formation of von Karman vortex streets. The unsteady
flow exerts fluctuating forces which may cause
structural damage to the body due to induced
vibrations. The control of such ‘flow-induced
vibrations’ is of paramount interest to the researchers.
The control of flow-inducted vibrations is achievable
through the control of vortex shedding which leads to
the reduction of unsteady forces acting on the body,
thus, significantly reducing unwanted vibrations. In
2016, Rashidi et al provided a comprehensive review
of several active and passive control methods
implemented for vortex suppression [6]. Some of
them are electrical methods, feedback control
methods, use of thermal effects, rotary oscillations,
etc. Among several control methods, MHD is a new
approach of flow control involving the motion of
electrically conducting fluids such as liquid metals,
electrolytes, plasmas etc. MHD deals with the study
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of the motion of electrically conducting fluids under
the presence of magnetic field. Whenever an
electrically conducting fluid flows under the presence
of external magnetic field, it induces an electric
current which, in turn, interacts with the magnetic
field to produce the Lorentz force. For flows of
conducting fluids past bluff bodies, this force act as a
damping force which can completely eliminate the
periodic vortex shedding and the flow-induced
vibrations. Other applications of MHD are pumps,
generators, industrial processes in metallurgical
industry, material processing in chemical engineering,
nuclear engineering etc. For instance, in metallurgical
and material processing, the application of magnetic
fields includes heating, melting and casting of
conducting materials, stirring and levitation of liquid
metals.

Many researches regarding the control of flow
involving conducting fluids past bluff bodies are
already available. In 1974, Bramley investigated the
steady two-dimensional incompressible flow of a
conducting fluid past a circular cylinder in the
presence of streamwise magnetic field using the
method of series truncation. It was observed that the
flow remains attached to the surface of the cylinder
and the flow separation is not seen until the rear
stagnation point [7]. In 1985, Kumari & Bansal
investigated the slow motion of a viscous,
incompressible and electrically conducting fluid
around a circular cylinder in the presence of magnetic
field parallel to the main flow for two Reynolds
numbers i.e. 0.05 and 0.1 using series truncation
method. They concluded that the tangential drag
coefficient increases with the increase in Stuart
number (N) [8]. In 1993, Josserand et al studied the
effect of streamwise magnetic field on the flow of a
liquid metal past a cylinder. It was observed that the
drag could be minimised on the application of
magnetic field and von-Karman streets observed
behind the cylinder could be eliminated if a
sufficiently strong magnetic field is applied [9]. In
2000, Rao & Sekhar investigated the steady
two-dimensional incompressible MHD flow past a
circular cylinder up to Reynolds number of 500 and N
= 1.3 in the presence of aligned magnetic field using
finite difference method. It was found that as N
increases, the suppression of the separation is
observed. For small values of N, drag coefficient
decreases with the increase of N [10]. In 2007, Singha
et al investigated the laminar viscous flow of a
conducting fluid past a confined square cylinder for a

fixed blockage ratio β = 1/4 under the influence of
transverse magnetic field at Reynolds number ranging
from 50 to 250. It was found that for a steady flow,
the separated zone behind the cylinder is reduced as
the magnetic field is increased. For flows with
periodic vortex shedding and unsteady wake regime,
as the magnetic field is increased, the Strouhal
number marginally increases. It was also observed
that the vortex shedding can be completely suppressed
if the sufficiently strong magnetic field is applied.
They also suggested a range of minimum Hartmann
numbers for different Reynolds numbers at which
complete suppression of the vortex shedding could be
achieved [11].

In this paper, the effects of magnetohydrodynamics on
the laminar incompressible viscous flow of an
electrically conducting fluid past a square cylinder for
a fixed blockage ratio β = 1/8 using MHD module of
ANSYS Fluent solver are studied. The fluid
considered has constant physical properties and are
given by: dynamic viscosity µ= 1 kg/ms, density ρ =
100 kg/m3, electrical conductivity σ = 100 S/m and
magnetic permeability µ0 = 1.257 × 10−6 H/m. The
paper investigates the effects of magnetic field on
wake structure and flow coefficients.

2. Problem Description and
Mathematical Modelling

2.1 Geometrical Configuration

Figure 1: Schematic diagram of the physical model

The problem under consideration is shown in Figure 1.
A two-dimensional laminar viscous flow of an
electrically conducting incompressible fluid having
constant electrical conductivity σ , dynamic viscosity
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µ and density ρ around a square cylinder confined in
a rectangular channel is considered. The fluid flow
with a parabolic inlet velocity U0 from left to right is
considered. A uniform magnetic field B0 is applied in
the transverse direction. The height of the channel is
W and d is the side length of the square cylinder. The
origin is located at the centre of the cylinder. The
non-dimensional total length of the channel is set to
X/d = 50 . The non-dimensional upstream length
between the channel inlet to the origin of the cylinder,
Xu, is taken as 12.5 whereas the non-dimensional
downstream length, Xd , between the origin of the
cylinder and the channel outlet is taken as 37.5. The
fixed blockage ratio (β = d/W) is taken as 1/8. All the
solids walls are insulated.

Through MHD interactions, an electric field E is
induced perpendicular to the plane of the flow, which
in turn, gives rise to the secondary magnetic field b
parallel to the main flow. The magnetic Reynolds
number, Rem = µ0σU0d, is in the order of 10−5. Since
Rem � 1, the strength of induced magnetic field is
negligible compared to the applied magnetic field B0.

2.2 Governing Equations

A laminar, viscous and incompressible flow of an
electrically conducting fluid in the presence of
external magnetic field can be described by a set of
Navier-Stokes and Maxwell equations. The governing
equations are written under three sub-headings as
follows:

2.2.1 Navier-Stokes Equations

For incompressible fluids, the continuity equation is
defined as:

∇V = 0 (1)

In the presence of external magnetic field, the flow is
described by adding proper source term to the
momentum equation as follows:

∂V
∂ t

+ V. ∇V = -
1
ρ

∇p + ν∇2V +
1
ρ

J×B (2)

Here, the term,
1
ρ

J×B in Equation 2 represents the

Lorentz force acting in the flow domain.

2.2.2 Maxwell’s Equations

A set of Maxwell’s equations are stated as follows:

∇ ·B = 0 (3)

∇×E = -
∂B
∂ t

(4)

∇ ·D = q (5)

∇×H = J +
∂D
∂ t

(6)

The induction fields H and D are defined as:

H =
1
µ

B (7)

D = εE (8)

The magnetic induction method available in MHD
module built in ANSYS Fluent has been selected for
all simulations.

2.2.3 Magnetic Induction Formulation

The theoretical framework regarding the magnetic
induction method is provided by [12] as follows:

According to Ohm’s law, the current density can be
defined as:

J = σE (9)

When the fluid is moving defined by velocity field V
in the presence of magnetic field B,

J = σ(E +V×B) (10)

From Equation 4,

∂B
∂ t

= -∇×E (11)
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From Equation 10,

E =
J
σ

- V×B (12)

Taking the curl on both sides in Equation 12,

∇×E = ∇ × (
J
σ

- V×B) (13)

Inserting Equation 13 into Equation 11, we get,

∂B
∂ t

= -∇ × (
J
σ

- V×B) (14)

∂B
∂ t

= -∇ × (
J
σ
) + ∇ × (V × B) (15)

If the displacement current is neglected, we can rewrite
Equation 6 as:

∇×H = J (16)

Using Equation 7,

1
µ

(∇ × B) = J (17)

Substituting Equation 17 into Equation 15, we get,

∂B
∂ t

= -
1

µσ
∇ × (∇ × B) + ∇ × (V × B) (18)

Equation 18 can be rewritten as:

∂B
∂ t

= -
1

µσ
(∇(∇ · B) - B (∇ ·∇)) + V (∇ · B) - B(∇·V)

(19)

Using Equation 3, we get,

∂B
∂ t

=
1

µσ
∇2 B + V (∇ · B) - B(∇ · V) (20)

Equation 20 can be written as:

∂B
∂ t

+ B(∇ · V) =
1

µσ
∇2 B + V (∇ · B) (21)

Equation 21 represents the magnetic induction
formulation derived from Ohm’s law and Maxwell’s
equations. By solving Equation 21, we can obtain B,
and using B, we can compute J.

The Reynolds and Hartmann numbers have been
defined on the basis of side of the cylinder as: Re =
ρU0d

µ
and Ha = B0 d

√
σ

µ
respectively.

2.3 Grid Structure

Structured non-uniform grids have been generated
using ICEM CFD software. Figure 2 shows the
expanded view of M4 grid. Four progressively refined
grids have been created with constant cell sizes of ∆

and δ around the surface of the cylinder and in the
adjacent of channel walls respectively. Details of the
grids can be found in Table 1.

Figure 2: Grid structure

Table 1: Details of the grids

SN Name of grids λ ∆ δ

1 M1 14972 0.01d 0.02d
2 M2 27022 0.01d 0.02d
3 M3 42172 0.01d 0.02d
4 M4 60422 0.01d 0.02d
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2.4 Physics Setup

The SIMPLE algorithm is used for coupling between
continuity and momentum equations. For temporal
discretization, the second-order implicit scheme has
been used. For spatial discretization, the second-order
upwind scheme has been used for convective terms
while the central difference scheme has been employed
for diffusive terms. A convergence criterion of 10−7 is
found to be sufficient for all the equations [13].

The boundary and initial conditions associated with
the physical problem shown in Figure 1 are explained
as follows:

a) At the inflow plane: At the inlet of the channel,
the flow is assumed to be parabolic distribution. The
parabolic velocity distribution is used to denote the
fully developed laminar flow. In order to assign the
parabolic velocity distribution, the following boundary
condition has been imposed at the inlet which is given
by,

u = 1 -
(

2y
W

)2

, v = 0

b) On the top and bottom walls: Since the present
study considers confined flow across the square
cylinder placed in a channel, a no-slip boundary
condition, that is, u = 0, v = 0 has been applied on the
top and bottom walls.

c) On the surface of square cylinder: No-slip condition
has been applied on the solid surface of the square
cylinder.

d) At the exit plane: Pressure outlet boundary
condition has been applied at the exit plane.
Regarding the initial condition, there is no flow inside
the channel at the initial time.

2.5 Grid Independence Study

A grid independence study was carried out using four
different grids listed in Table 1. Simulations have
been performed for Re = 100 taking time-step size, ∆t
= 0.025 s for all simulations. It can be observed that
the variation in Cd as we move from M1 mesh to M2
mesh is 4.18%. Again, as we move from M2 mesh to
M3 mesh, the variation in is less than 1%. As we
move further from M3 mesh to M4 mesh, the
variation is 0.23%. Similarly, the difference in
Strouhal number (St) between M3 and M4 meshes is
less than 1%. Figures 3 and 4 shows the variation in
the values of Cd and St with the size of the grids.

Hence, for conservative analysis, M4 mesh has been
chosen for the rest of simulations.

Figure 3: Variation of drag coefficient with number
of elements

Figure 4: Variation of Strouhal number with number
of elements

2.6 Validation

With M4 mesh and boundary conditions, simulations
have been performed to compute the values of drag
coefficient and Strouhal number for respective
Reynolds numbers and compared with the results of
Breuer et al[14]. They studied the laminar flow past a
confined square cylinder up to Re = 300 for a fixed
blockage ratio (β = 1/8) using two different numerical
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techniques, namely a lattice-Boltzmann automata and
a finite volume method. However, comparison of the
present results has only been made against the results
obtained from finite volume method. Figures 5 and 6
depict a good agreement between the present results
of drag coefficient for Re = 1-200 and the published
literature. Similarly, the values of Strouhal number for
Re = 75-200 are also in good agreement with the
published literature shown in Figure 7. For instance,
the average difference between the present results and
the published literature of drag coefficient for Re =
1-50 is 1.83 %. Similarly, the average difference
between the present results and the published
literature of time-averaged drag coefficient and
Strouhal number for Re = 75, 100 and 200 is 1.15 %
and 0.39 % respectively.

Figure 5: Comparison of drag coefficient against
published literature for Re = 1-50

Figure 6: Comparison of drag coefficient against
published literature for Re = 75, 100 and 200

Figure 7: Comparison of Strouhal number against
published literature for Re = 75, 100 and 200

3. Results and Discussion

3.1 Critical Hartmann number

Critical Hartmann number (Hacr) refers to the value
of Hartmann number at which an unsteady flow
converts to a steady flow. In 2007, Singha et al
reported a range of minimum Hartmann number for
several Re in case of square cylinder under transverse
magnetic field [11]. Table 2 presents the required
range of minimum Hartmann number for several Re
which converts unsteady flow to steady flow.

Table 2: Range of Ha for different Re

SN Re Range of minimum Hartmann number
1 150 2.0-3.0
2 200 3.0-4.0
3 250 4.0-5.0

The value of critical Hartmann number has been
obtained for Re = 200 and compared with the values
reported by Singha et al [11] and Turki et al [15]. .

Table 3: Comparison of Hacr for Re = 200 against
published literature

SN Singha et al [11] Turki et al [15] Present
1 3.0-4.0 3.662 3.6

The critical Hartmann number (Hacr) for Re = 200
has been found to be 3.6 which is in excellent
agreement with the published literature as shown in
Table 3. These results indicate good solution
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capabilities of magnetic induction method in MHD
module built in ANSYS Fluent.

Figure 8: Streamlines at Re = 200: (a) Ha = 0, (b) Ha
= 1.0, (c) Ha = 3.0, (d) Ha = 4.0 and (e) Ha = 8.0

3.2 Influence on wake

Figures 8 and 9 depict the contours of streamline and
vorticity of the flow at Re = 200 under varying
magnetic fields in crossflow direction. For Ha = 0, the
flow at Re = 200 is of transient nature evidenced by
the presence of alternate shedding of vortices from the
top and bottom region of square cylinder as shown in
Figure 9 (a). For Ha < 3.6, it is observed that the flow
still remains in unsteady state depicted by Figures 8
(a)-(c). At Ha = 3.6, the vortex shedding phenomena
is completely eliminated and the flow assumes steady
state, evidenced by the presence of a closed and
symmetric recirculating wake as shown in Figure 8

(d). With further increase in Hartmann number, it is
observed that the length of the wake is reduced as
shown in Figures 8 (d)-(e). The physical explanation
behind such phenomena is that the application of
transverse magnetic field produces a damping force
known as Lorentz force in the upstream direction
capable of eliminating the diffusion of vortices. If a
sufficiently strong magnetic field is applied, the flow
asymmetry and unsteadiness could be completely
removed and thus, the flow-induced vibrations could
also be completely eliminated.

Figure 9: Contours of vorticity at Re = 200: (a) Ha =
0, (b) Ha = 1.0, (c) Ha = 3.0, (d) Ha = 4.0 and (e) Ha
= 8.0
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Figure 10: Time history of the drag coefficient with
respect to the non-dimensional time (t) at Re = 200:
(a) Ha = 0, (b) Ha = 1.0, (c) Ha = 3.0, (d) Ha = 4.0
and (e) Ha = 8.0

3.3 Influence on flow coefficients

Figures 10 (a)-(e) shows the temporal variations of the
average drag coefficient at Re = 200 for different
Hartmann numbers. From Figures 10 (a)–(c), it is
seen that the average drag coefficient decreases from
1.3742 to 1.0069 with the increase in Hartmann
number from 0 to 3.0 as long as the flow is in
unsteady regime. However, when the flow attains
steady state on the application of sufficiently strong
magnetic field, the drag coefficient is found to
increase with further increment of Hartmann number
as shown by Figure 10 (d)-(e). The physical
explanation can be attributed to the fact that at steady
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Figure 11: Time history of the lift coefficient with
respect to the non-dimensional time (t) at Re = 200:
(a) Ha = 0, (b) Ha = 1.0, (c) Ha = 3.0, (d) Ha = 4.0
and (e) Ha = 8.0

state, the fluid flux across any cross-section of the
channel is constant causing the pressure drop to
increase with the increased amount of Lorentz force
to keep on the flow. This increment in pressure drop is
due to the pressure increase on the front region of the
cylinder, consequently increasing the pressure drag on
the body.

The temporal variations of the lift coefficient for Re
= 200 at different Hartmann numbers are shown in
Figure 11 (a)-(e). It is seen that the amplitude of lift
coefficient significantly decreases with the increase in
Hartmann number from 0 to 8. This implies that the
strength of shed vortices has also reduced. After an
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initial transient period, it is observed that the average
lift coefficient becomes zero which indicates that the
flow has attained steady state as shown in Figure 11
(d). With further increase in Hartmann number, it is
seen that the time to attain the steady state decreases
as shown in Figure 11 (e).

Conclusions

In this paper, a laminar incompressible viscous flow
of an electrically conducting fluid past a square
cylinder confined in a channel under the presence of
transverse magnetic field has been studied. The fluid
is assumed to have uniform electrical conductivity.
The magnetic Reynolds number is very small so that
the induced magnetic field is negligible compared to
the applied magnetic field. The magnetic induction
method in MHD module built in ANSYS Fluent has
been considered to carry out MHD simulations. From
the study, the following conclusions are drawn
regarding the effects of transverse magnetic field on
the flow around square cylinder as follows:

• The complete suppression of vortex shedding is
achievable if a sufficiently strong magnetic field
is applied.

• The drag coefficient is decreased from 1.3742
to 1.0069 as the Hartmann number is increased
from 0 to 3.0 in the periodic laminar regime but
starts to increase in the steady flow regime.

• The amplitude of lift coefficient is decreased
with the increase in Hartmann number
indicating the reduction in strength of shed
vortices.

• A critical value of Hartmann number, Hacr = 3.6
has been found for Re = 200 at which complete
suppression of vortex shedding is observed.
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Nomenclature

µ Dynamic viscosity of the fluid medium
ν Kinematic viscosity of the fluid medium
ρ Density of the fluid medium

σ Electrical conductivity of the fluid medium
d Side length of the square cylinder
β Blockage ratio
Xu Upstream length of the computational domain
Xd Downstream length of the computational domain
X Total length of the computational domain
W Height of the computational domain
H Magnetic field strength
D Displacement field
B0 Applied magnetic field
B Total magnetic field
b Secondary magnetic field
N Stuart number
Rem Magnetic Reynolds number
q Charge
ε Permittivity of the material medium
µ0 Permeability of free space
µ Permeability of material medium
J Current density
Ha Hartmann number
Hacr Critical Hartmann number
E Electric field
Cd Drag coefficient
Cl Lift coefficient
St Strouhal number
Re Reynolds number
U0 Maximum parabolic inlet velocity
V Dimensionless velocity vector
t Non-dimensional time
x Streamwise co-ordinate
y Transverse co-ordinate
λ Total number of elements
∆t Time step size
δ Minimum cell size adjacent to the channel walls
∆ Minimum cell size around surface of the square cylinder
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