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Abstract
We propose a physics-informed neural network(PINN) based framework to discover the governing partial
differential equation(PDE) of a given system from data. Given data, our method generalizes a neural network
to compute a matrix of candidate terms for PDE. Minimizing the residuals from the candidate matrix allows us
to find the coefficients for the equation. We present a framework to discover pde not restricted to first order
time derivative equations.
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1. Introduction

Scientists have relied on their ability to predict
complex phenomena by recording the observations
and modeling them into parsimonious mathematical
models. But the extraction of these mathematical
equations from experimental data, often in the form of
differential and partial differential equations (PDEs),
is a challenging endeavor, which takes ingenious
imagination and years to perfect. These PDEs are
ubiquitous over diverse quantitative disciplines, from
engineering to basic sciences and from physics to
economics, however in many cases these equations
are unknown. These equations are commonly derived
using first principle approaches satisfying the data
observations. Using traditional methods, one can
model these observations into an equation but
discovering the underlying hidden physical law is
much more complex. For example, using Tycho
Brahe’s planetary data Kepler discovered elliptical
orbits but this attractor based law did not reflect the
hidden dynamics of the system. The actual governing
equation describing the orbital motion was later
discovered by Newton.

With the advent of micro-electromechanical systems
(MEMS) sensors, it has been easier to collect
experimental data in many situations. The ability to
derive governing equations for simple to complex
natural phenomena using sensors data will be helpful

in domains that lack a well-defined quantitative
equations. Analyzing such a large amount of data
utilize pattern recognition and machine learning
methods[1]. However, machine learning models
fundamentally assume that data for training as well as
testing are from the same distribution. This
assumption is more pronounced in deep learning
methods [2]. Recent theory-guided data science
(TGDS) [3] methods attempt to integrate existing
scientific theory into the data science model for
inference and prediction.

We present a theory guided data science approach to
recover the governing partial differential equations
through function approximation using Physics
Informed Neural Networks (PINNs). To summarize,
the main contributions of this paper we used deep
learning based method for the recovery of PDEs as
linear combinations of predefined candidate terms for
different types of PDE.

This paper is organized as follows. Section 2 presents
related and similar research works in the field of
discovery of governing equation. In Section 3, the
PDE estimation problem is defined formally. Section
4 present the research methodology applied to recover
the underlying PDE using neural networks. In Section
5 numerical results and graphs obtained with
simulated data is presented. Section 6 discusses on
future application and possible improvements on this
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method and finally we conclude on section 7.

2. Related Works

There are three mainstream methods developed for
discovery of governing PDEs of physical system, viz.
symbolic regression, sparse optimization methods, and
hybrid frameworks.

2.1 Symbolic Regression

Symbolic regression [4] is an evolutionary
computation based method for searching a space of
mathematical expressions constructed by pre-defined
analytical functions, constant coefficients and
algebraic operators, to minimize certain metrics of
error. The symbolic regression methods [5, 6] has
shown to extract “free-form” physical laws, of any
kind in theory, such as the Hamiltonian, Lagrangian,
momentum conservation and equations of motion for
some simple and crucial physical systems; but, these
methods can be extremely time-consuming.

2.2 Sparse Optimization Methods

The sparse optimization methods such as Sparse
Identification of Non-linear Dynamics (SINDy) [7]
can identify first-order differential equations of
non-linear dynamical systems by expressing the
first-order time derivative as linear combinations of a
candidate functions and determine the unknown
coefficients to minimize certain metrics. The
sparse-promoting methods are more efficient than
symbolic methods and have been generalized to
successfully discover partial differential equations as
well [8, 9]. SINDy applies finite difference method to
approximate the derivatives for estimating the
governing equation. Finite difference methods
perform poorly in the presence of noise. Furthermore,
SINDy is designed to work with first-order time
derivative models only.

ut = f (x,u,ux,uxx, ...;Θ) (1)

where, the subscripts refer to time or spatial variables,
f (·) is unknown linear function of u, its partial
derivatives and parameters Θ.

2.2.1 Neural Networks Based Methods

As a consequence of universal approximation theorem
(UAT) [10, 11], a neural network with some

non-linear activation function can approximate any
function and its derivatives to an arbitrary degree of
accuracy. Hence, many attempts were made to model
the physical laws with neural network. Furthermore,
to constrain the neural network within the governing
equations, the physics-informed neural network
(PINNS) [12] can be trained with general non-linear
partial differential equations as regularizing priors.

Other methods such as PDE-Net [13] applies
convolutional neural networks with filters constrained
to finite difference approximations, to learn the form
of a PDE without sparsity constraints. Auto-encoders
[9] are used to simultaneous discover co-ordinates and
governing equations, also linking necessary
transformation to the input data to coordinates
transformation [14].

2.3 Hybrid Methods

PDE-Net 2.0 [15] builds upon PDE-Net with symbolic
regression method combining both sparse optimization
and symbolic regression method.

Our method focuses on sparse optimization using
Neural networks to discover governing equations not
restricted to temporal first-order PDEs.

3. Problem Definition

A PDE relates a function u : Ω→ R, where Ω ∈ Rn

with variables x = (x1, ...,xn) and partial derivatives
Dku(x) := ∂u

∂x1
, ..., ∂ 2u

∂x1∂xn
, ..., ∂ ku

∂xk
n

where k is the order
of PDE. Here, x represent any variable, spatial such as
’x’,’y’,’z’ or temporal variable ’t’. Hence, the PDE has
a general form

f (x;u(x);Dku(x)) = 0 (2)

where, f (·) is a function of x, u, and the partial
derivatives.

An example of PDE is wave equation which is a second
order hyperbolic PDE represented as

∂ 2u
∂ t2 − c2 ∂ 2u

∂x2 = 0

where, c is the velocity of wave propagation. Let, c =
1. The equation can be written as utt −uxx = 0.

To search PDE for a system, the space of all possible
terms are infinitely large, hence we select a list of
L candidate terms C = (c1, ...,cL), where candidate
terms are functions of variables xi, dependent variable
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u(xi), and partial differential terms Dku(x). Then, we
construct PDE as the weighted linear combination of
these candidate terms, which is of the following form.

L

∑
i=1

θ
∗
i ci(x;u(x);Dku(x)) = 0 (3)

where, Θ∗ = (θ ∗1 , ..,θ
∗
L ) is unknown vector of

coefficients for the linear combination of candidate
terms. The central problem being solved by this paper
is to determined this coefficient vector Θ.

For wave equation, we can select a list of candidates
such as [utt ,uxx,ut ,ux,u,u∗ux] and so on. The solution
should give us Θ∗ that is close to (1,−1,0,0,0,0)

4. Research Methodology

4.1 Data Generation

Given data in the form (x,u) = ((x1,u1), ...,(xN ,uN))
where u is function of x.

ui = u∗(xi)+ εi, i = 1, ...,N (4)

Here, noise εi is assumed to be zero mean Gaussian
with σ2 variance.

Datasets were generated from symbolic function
which are known to be solutions of the PDE. 10,000
sample points are drawn from these datasets using
latin-hypercube sampling method to get near-random
sample of data in multiple dimension. A validation set
was split from the sample with test split of 0.2.
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Figure 1: Sampled points (black dots) from contour
of Wave Equation, utt − c2uxx = 0, where c=1
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Figure 2: Sampled Points (black dots) from contour
of Inviscid Burgers Equation, ut +u∗ux = 0
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Figure 3: Sampled Points (black dots) from contour
of Helmholtz Equation, uxx +uyy + k2u = 0, where
k=1

4.2 Model Architecture

A multi-layer perceptron (MLP) with 4 hidden-layers
each consisting of 50 hidden units. Softplus is used as
activation function in all layers except the output layer
which is just a linear unit.

4.3 Model Fitting

Root mean square error (RMSE) was used for training
the neural network, since it has the same units as the
output variable and can give a quick indication of how
the model is performing.

Lu(x;W ) =

√
1
N

N

∑
i=1

(ui(x)− ûi(x;W ))2 (5)

405



Data-Driven Discovery of Governing Partial Differential Equations

where W are neural networks parameters and û is the
prediction of the neural network. This is later
regularized by additional regularization terms.

4.4 Regularization

Physics-based Regularization and Model
Discovery The correct PDE solution, û∗(x;W )
should satisfy PDE Eq. (3) for every point x ∈ Ω, a
technique used as regularization prior in PINNs [12].
Since, neural networks can also approximates
gradients with arbitrary accuracy under mild
assumptions on the activation function [11]. With
better generalized model we can estimate differentials
through auto-differentiation (auto-diff) with less
truncation errors compared to numerical
differentiation for higher order differentials.

Each term in the candidate list is evaluated over M
collocation point through auto-diff to obtain matrix
H ∈ RM×L and PDE in Eq. (3) transforms into linear
system of equations. In the experiments 1000
collocation points were sampled from within the same
domain.

 | | |
C1(x, ûi,Dkûi) . . . CL(x, ûi,Dkûi)

| | |


θ ∗1

...
θ ∗L

 (6)

For brevity ûi(x;W ) has been written as ûi. Where i =
1..M collocation point. For each collocation point we
calculate the derivatives using auto-diff and estimate
values for each candidate term in the list and form the
matrix H.

H(x, û)Θ∗ = 0 (7)

To determine Θ∗, we solve the above linear system of
equation of the form Ax = 0. Since, the null space of
M consists of all solutions Θ.

Null(H) = {Θ∗ ∈ RL | HΘ
∗ =~0}

Equivalently, Θ∗ is singular vector of H associated
with the singular value 0. According to min-max
theorem for singular values [16], the minimum of
‖HΘ‖, subjected to ‖Θ‖2 = 1, is the smallest singular
value of H. This constraint achieved through
normalization also prevents the obvious solution
Θ = 0. Hence, the function residual loss is

L f (x; û;Θ) = ‖HΘ‖2
2 , with ‖Θ‖2 = 1 (8)

Determining Θ having minimum residual ‖HΘ‖ also
have the physical interpretation that we want the
discovered equation to satisfies the data very well.

Parsimony Laws of nature are inherently simpler
and parsimonious i.e. the governing equation consist
of only few terms. Hence, to choose sparse form from
relatively large space of potential candidate terms, we
additionally impose L1 sparsity on the Theta.

Lnorm = ‖Θ‖1 (9)

4.5 Combined Regularization and loss

Lu can be further used as an additional regularizer
when multiplied with the other regularization term
[17]. Here, λu, λ f and λnorm are coefficients for each
loss function, used as additional hyper-parameters to
the network. We estimated W and Θ with the
minimization of Ltotal .

Ltotal = λuLu(1+λ f L f +λnormLnorm) (10)

5. Results and Discussion

5.1 Training Results

For training the model Adam optimizer with learning
rate of 0.02 for the coefficient Θ and 0.01 for Neural
Networks weights W with exponentially decay at rate
of 0.9998 was used. The models were trained for
50,000 epochs as model prediction kept improving
even after convergence.
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Figure 4: Training Curve for Wave Equation
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Figure 5: Training Curve for Inviscid Burgers
Equation
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Figure 6: Training Curve for Helmholtz Equation

Fig. 4, 5 and 6, all shows similar trend in training.
The Lu written as L u decreases below 10−3 and
converges. The random zigzag pattern indicates that
the learning rate, and other hyper-parameters might
not be optimal. Hence, different equations are likely
to have dissimilar hyper-parameters but for
consistency of the presentation we have used same
hyper parameters for all experiments. A slight
difference in residual L f written as L f can be seen,
for wave and Inviscid Burgers equation, the residual is
far less compared to Helmholtz. Low residual might
indicate correct identification of the coefficient vector
or a local minima with low residual from a different

set of coefficient vector. Ls parse and Ltotal written
as L sparse and L attain a nearly constant value.

The coefficient vector is also taken as parameter which
are stepped during the loss minimization.

5.2 Evaluation

To compare accuracy of equation discovered from this
method with the correct form, we used Sqrt-Cosine
Error as to determine the equation recovery error,
sometimes also referred as error in law. We used
cosine similarity as the measure of compare between
the two coefficient vectors rather than using L2 norm
distance which are more commonly used.

Error in Law(Θ∗,Θ) =
√

1− cosine(Θ∗,Θ) (11)

We have the correct coefficient vector Θ∗ as we know
the partial differential equation and we estimate Θ

using above methods.

PDE Candidate
List

Recovery
Error

Wave Equation
utt − uxx = 0
x, t ∈ [−3,3]

utt ,uxx,ut ,ux

u,u2,uux

(1.42 ±
0.024)×10−3

Invisicd Burgers
ut + u ∗ ux = 0
x, t ∈ [0,1]

utt ,uxx,ut ,ux,
u,u2,uux,u2

x

(6.43±0.13)×
10−3

Helmholtz
uxx+uyy+u= 0
x,y ∈ [−π,π]

uxx,uyy,uyx,
uy,ux,u,u2,
uux,uuy

(3.51±0.12)×
10−3

Table 1: Table shows average and standard deviation
of error in estimating the governing equation

The table (1) and fig. (7) shows the error in prediction
(recovery) of governing equation calculated using eq.
(11). All the values are in order of 10−3 or less which
indicates that the vectors coefficients are very close to
the correct vector. This values are similar to [17] as
it uses similar metrics and loss functions. This model
performs also performs well in comparison to [8] for
discovery of PDE which uses euclidean distance for
measuring error in recovery of the governing equation.
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Figure 7: Plot of Log of Error in law throughout one
particular training session

The fig. (7) also shows that the Helmholtz equation
being an elliptic form of PDE converges early
compared to other equations which have temporal
components.

5.3 Validation

A validation dataset was split after data sampling with
train test split ratio of 0.2. Root mean squared loss
similar to Eq. (5), is calculated and plotted in training
curve. The model performed very well on the data
within the domain. Model validation was done only
within the domain from which the data was sampled
but not outside the domain. In fig. 4, 5 and 6, the
line for Lval u which is RMSE value calculated using
same equation in Eq. (5). The Lval u curve follows
closely with L u, curve.

Furthermore, to validate our method with No Free
Lunch (NFL) Theorem [18], we tested the method
with three different forms of partial differential
equations. Wave equation as a form of hyperbolic
PDE, Helmholtz equation as a form of elliptic PDE,
and Inviscid Burgers equation which is a form of first
order quasi-linear hyperbolic equation was used.
Models performed well in all three forms of
equations.

In addition, error in estimating the gradient using
automatic differentiation was calculate using the
actual gradient estimated from symbolic gradient
estimation. The error was within 2% for first order
gradients and within 5% for second order gradients.

5.4 Discussion

There are still many unanswered questions that needs
further research. Firstly, some affect of candidate
function choices was visible during experimentation
which was not thoroughly investigated. Certain
candidate function might lead to erroneous results.
Previous domain knowledge in the field could help
select appropriate candidate terms list. There needs
further investigation on use of functions and constants
in the candidate list.

Furthermore, higher dimension equations and other
forms of partial differential equations can be
considered. We can also make use of Sobolev training
to fit the target value as well as higher order
derivatives of the target value [19], which would
improve the quality of the regressor.

6. Conclusion

We present a framework to recover governing partial
differential equations in general form for the case
where discovery of PDE from first principles is
intractable. We present a framework to discover pde
not restricted to first order time derivative equations.
There are still number of open issues and missing
gaps that could be further studied and improved.
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