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Abstract
Flow induced vibration in pipes conveying fluid with different end conditions and different materials is studied in
this paper. Four types of end conditions: simply-simply, clamped-clamped, clamped-simply and clamped-free
and four materials: aluminum, steel, chlorinated poly-vinyl chloride (CPVC) and concrete are used for the
study. Mathematical equation of the flow induced vibration in pipes conveying fluid is developed by using
Hamilton’s energy principle. Finite Element Analysis is used to study the vibrational characteristics of pipe
conveying fluid. The effect of the increase in the fluid velocity on the fundamental frequency of vibration of pipe
is studied. Results of the simply-simply supported aluminum pipe are compared with the experimental results
for the purpose of validation of finite element model. Natural frequency of vibration and critical flow velocity
are determined and vibration characteristics of pipes of different ends conditions and materials are analyzed.
Natural frequencies and critical flow velocities from finite element method are compared with the values form
direct method. Results indicate that the stability of clamped-clamped supported pipe is very high and the
stability of clamped-free supported pipe is very less against flow induced vibration. All the conclusions can be
applied in the HVAC pipe installations, petroleum transportation, nuclear installations and other engineering
fields for reducing failures due to vibration.
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1. Introduction

Piping systems are widely used in many engineering
applications for transferring fluids such as in HVAC,
petroleum transportation, municipal water supply,
nuclear power plant, hydropower etc. The coupling
effect between the fluid and pipe structure can cause
pipe vibration and even rupture. Flow induced
vibration is undesirable in engineering applications
where large amplitude vibrations can cause serious
and costly damages and can also put the human life at
risk. One of the familiar example is the collapse of
Tacoma Narrows Bridge on November 7, 1940 during
windstorm. Another most familiar form of the
instability is the flailing of an unrestrained garden
hose [1]. Therefore, maintaining the stability and
reliability of engineering equipment and systems
against flow-induced vibration is the challenging
problem, which the engineer has to face.

Over the past seven decades, vibration of pipes
conveying fluid has been studied extensively. Dodds

and Runyana [2] has presented experimentally the
effect of high velocity fluid flow on the static and
dynamic characteristics of a simply supported pipe in
1965. There is a flow velocity at which the system
becomes unstable, which is called critical flow
velocity.

An excellent overview is given by M.P. Paidoussis in
1993. The dynamics of the pipes with supported ends,
cantilevered pipes or pipes with unusual boundary
conditions; continuously flexible pipes, pipes
conveying compressible or incompressible fluid, these
and many more are the aspects of the problem
considered [3]. A great contribution on vibration of
pipes conveying fluid was provided by Zang, Gorman
and Reese [4]. He derived dynamic equilibrium
matrix equation for a discretized pipe element
containing flowing fluid from the Lagrange principle,
the Ritz method by consideration of coupling between
pipe and fluid. He developed a linear vibration model
for the vibration analysis of pipes conveying fluid.
The model is then used to investigate the vibratory
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behavior of simply supported pipe subjected to initial
axial tensions with three cases: empty pipe, static pipe
and pipe conveying fluid. The results from linear
vibration model were compared with experimental
results.

Subsequently, Kupier and Metrikine [5] conducted
a research on stability of clamped-pinned pipe. A
tensioned Euler-Bernoulli beam in combination with a
plug flow model is used as model. The stability was
studied by using D-decomposition method. In this
paper analytical proof of stability of a clamped-pinned
pipe conveying fluid at a low speed is presented.

Wang and Ni in 2006 [6] studied the stability and
chaotic motions of a standing pipe conveying fluid
and compared with hanging system developed by Jin
[7]. Both studies on hanging as well as standing pipes
involves elastic supports and motion limiting
constraints producing non-linear force on the pipe as
the motion becomes large. From the comparative
study, it is shown that the dynamics of the standing
pipe is much richer than that of hanging system [6, 7].

Yi-min, Yong-shou, Bao-hui, and Zhu-feng in 2010
[8] used eliminated element-Galerkin method to
investigate the natural frequency of fluid structure
interaction in pipeline conveying fluid and the natural
frequency equations with different boundary
conditions are obtained. By considering the Coriolis
force, the natural frequency of a straight pipe simply
supported at both ends is studied. In the given
boundary condition, the four components (mass,
stiffness, length and flow velocity) which relate to the
natural frequency of pipeline conveying fluid are
studied in detail and the results indicate that the effect
of Coriolis force on natural frequency is inappreciable
[8].

The natural frequency equations of fluid–structure
interaction in pipeline conveying fluid with both ends
supported is investigated by a direct method [9]. In
this article, the direct method is derived from Ferrari’s
method and used to solve quartic equations. The
dynamic equation of pipeline conveying fluid is
obtained by Hamilton’s variation principle based on
Euler–Bernoulli Beam theory. By using the separation
of variables method and the derived method from
Ferrari’s method, the natural frequency equations and
the critical flow velocity equations of pipeline
conveying fluid with both ends supported are obtained
and are compared with the results of natural
frequencies obtained by [8] by using eliminated

element-Galerkin method.

Shankarachar, Radhakrishna and Babu, 2015 [10]
applied Hamilton’s principle and variable separable
method to derive equation of motion and
transcendental frequency equation was derived for
linearly restrained end conditions. They considered
the pipe as Euler-Bernoulli Beam. Natural frequency
of vibration of pipe for three different conditions
namely pipe without fluid, pipe with static fluid and
pipe with fluid flow are determined. The results
obtained from developed model are compared with
the results from simulation done by using I-DEAS
software and experimental results for validation
purpose.

Sutar, Madabhushi and Posa, 2016 [11] derived
equation of motion for pipe conveying fluid from
energy expressions using Hamilton’s Principle. A new
transcendental frequency equation is derived for
guided end conditions by using separation of variables
method to obtain natural frequencies of fluid
conveying pipe. Simulation of pipe conveying fluid is
modeled by using I-DEAS software and the analysis
is done by ABAQUAS software. The results obtained
from both analytical and simulation methods are
compared for validation purpose and are found to be
in good agreement to each other [11].

In this paper, four types of boundary conditions
clamped-clamped, simply-simply, clamped-simply
and clamped-free are considered and four types of
materials steel, CPVC, concrete and aluminum are
used because material mechanical properties play and
important role for the evaluation of natural frequency
and critical flow velocity. Effect of boundary
conditions in the dynamic behavior of fluid conveying
pipes of four different materials are analyzed and
discussed.

2. Mathematical Modeling

Let us consider a fluid conveying pipeline based on
the Euler-Bernoulli Beam theory. The pipe shall be
supported at both ends by simple support, fixed
support or free at one end. The fluid inside the pipe is
assumed non-viscous and in-compressible. The
mathematical model of the transverse vibration
equation of the pipeline conveying fluid is derived by
using Hamilton’s energy principle. The structure of
the pipe is assumed to be small deformation, internal
damping and pressurization effects are either absents
or neglected. Figure below is the sketch of pipeline
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conveying fluid with fixed or simply or free end
conditions.

Figure 1: Pipe conveying fluid with supported or free
end condition

Equation of motion obtained from Hamilton’s energy
principle is as follows:

EI
∂ 4y
∂x4 +m f v2 ∂ 2y

∂x2 +2m f v
∂ 2y

∂x∂ t
+M

∂ 4y
∂ 4t

= 0 (1)

Where, M = mp +m f . L is length of the pipe, mp is
the mass per unit length of the pipe, m f is the mass of
the fluid per unit length, v is the flow velocity of the
fluid, E is the elastic modulus of the pipe material and
I is the moment of inertial of the cross section of the
pipe.

In the equation (1), first term is the force component
acting on the pipe as a result of pipe bending. The
second term is the force component acting on the pipe
as a result of flow around deflected pipe curvature.
The third term is the force required to rotate the fluid
element. This force is called Coriolis force. The last
term represents the force component acting on the pipe
as a result of the inertia of pipe and the fluid flowing
through it. The boundary conditions for the pipe with
different end conditions are as follows:

Simply-simply support: At x = 0,

EI
∂ 2y
∂x2 = 0,δy = 0

At x= L,

EI
∂ 2y
∂x2 = 0,δy = 0

Clamped-clampded support: At x = 0,

∂

∂x
δy = 0,δy = 0

At x= L,

∂

∂x
δy = 0,δy = 0

Clamped-simply support: At x = 0,

∂

∂x
δy = 0,δy = 0

At x= L,

∂

∂x
δy = 0,δy = 0

Clamped-free support: At x = 0,

∂

∂x
δy = 0,δy = 0

At x= L,

EI
∂ 2y
∂ 2x

= 0,EI
∂ 3y
∂ 3x

= 0

3. Natural Frequency and Critical
Velocity

The natural frequency equation of beam is given by
[12]. When the mass of the beam is replaced by mass
of the pipe system, it gives natural frequency of pipe
system.

wn = (βL)2

√
EI

ML4 (2)

The value of constant βL for clamped-clamped,
simply-simply, clamped-simply and clamped-free
conditions are 4.73, 3.142, 3.927 and 1.875
respectively.

The critical load for buckling of beam for different
end condition is given by [13]. When this critical
buckling load is replaced by load due to the fluid
flowing through the pipe, it gives critical velocity of
the fluid flowing through the pipe [2].

Vcr =
c
L

√
EI
ρA

(3)

The value of constant c for clamped-clamped,
simply-simply, clamped-simply and clamped-free end
conditions is 6.285, 3.142, 4.5 and 1.571 respectively.

4. Finite Element Modeling

There are two degrees of freedom (DOFs) at a node in
a planner beam elements. They are deflection in the
y-direction and the rotation in x-y plane. Hence, each
beam element has four DOFs.

To derive the four shape functions, the displacement
filed in the element direction can be approximated as
follows [12]

Y =
n

∑
i=1

Niai (4)
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Where, Ni are the interpolating shape functions and ai

are a set of unknown parameters. The shape functions
Ni are found to be equal to

N1 =
1
L3 (2x3−3Lx2 +L3) (5)

N2 =
1
L2 (x

3−2Lx2 +L2x) (6)

N3 =
1
L3 (3Lx2−2x3) (7)

N4 =
1
L2 (x

3−Lx2) (8)

Where, L is the length of the pipe element. The
potential energy of the pipe element is given by,

V =
1
2

∫ b

a
EI(

∂ 2y
∂ 2x

)2 dx =
1
2

∫ b

a
EI(y”)T (y”)dx (9)

The element stiffness matrix for pipe as beam element
is obtained as,

[K1] =
EI
L3


12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2


The force acting on the pipe due to the fluid flow is
given by,

π =
∫ b

a
m f v2 ∂ 2y

∂ 2x
dx =

∫ b

a
ρAv2(y′)T (y′)dx (10)

Where, ρ is the density of fluid and A is the cross-
sectional area of pipe. The stiffness matrix for the
force that conforms fluid to the pipe is obtained as,

[K2] =
ρAv2

30L


36 3L −36 3L
3L 4L2 −3L −L2

−36 −3L 36 −3L
3L −L2 −3L 4L2


The stiffness matrix [K2] tends to weaken the overall
stiffness of the pipe system. The force that causes
the fluid in the pipe to whip creating instability in the
system is represented by dissipation function, which
is given by,

D =
∫ b

a
2m f v

∂ 2y
∂x∂ t

dx =
∫ b

a
2ρAv(y′)T (ẏ)dx (11)

The elemental dissipation matrix for Coriolis force is
obtained as,

[D1] =
ρAv
30


−30 −6L −30 6L
6L 0 −6L L2

30 6L 30 −6L
−6L −L2 6L 0


The kinetic energy of the pipe element is given by,

T = M
∂ 2y
∂ 2t

=
∫ b

a
M(ẏ)T (ẏ)dx (12)

The elemental mass matrix for the pipe conveying fluid
is obtained as,

[m1] =
ML
420


156 22L −54 13L
22L 4L2 13L −3L2

54 13L 156 −22L
−13L −3L2 −22L 4L2


For the formation of global matrices for stiffness,
dissipation and mass, first a null matrix of size
[(Numbero f Nodes× 2)× (Numbero f Nodes× 2)] is
formed with its translational and rotational degrees of
freedom equal to Number of Nodes. Assembly of
elemental stiffness, dissipation and mass matrices to
global matrices is performed by MATLAB program.
After substitution of boundary conditions global
matrices for each support type of pipes are obtained.

5. Dynamic Analysis

The standard equation of motion in the finite element
form is given by [14]

[Mg](ÿ)+ [Dg](ẏ)+ [Kg](y) = 0 (13)

Where, Mg is the global mass matrix, Dg is the global
dissipation matrix and Kg = K1 − K2 is the global
stiffness matrix. The above equation has damping
term; the solution of eigenvalues problem shall be
executed with the characteristics matrix, which is
equal to [15]

[Ω] =

[
−[Mg]

−1[Kg] −[Mg]
−1[Dg]

I 0

]
The solution of the eigenvalue problem gives complex
roots. The imaginary part of the roots represents
natural frequencies of vibration and the real part
represents the rate of decay of the free vibration. The
characteristics equation is solved by using MATLAB
program.
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6. Model Validation

For the validation of the finite element model, the
results obtained for simply-simply supported
aluminum pipe were compared with the experimental
results of Dodds and Runyana [2]. Same parameters
as used in experimental analysis were used in finite
element analysis too.

Table 1: Parameters for Study

SN Parameters Values
1 Length of pipe 3.048 m
2 Outside diameter of pipe 0.0254 m
3 Thickness of pipe 0.00165 m
4 Modulus of elasticity 68.9 GPa
5 Density of pipe 2699 kg/m3

6 Density of water 1000 kg/m3

7 Mass of water 0.38 kg/m
8 Total mass of system 0.715 kg/m

Number of elements used for finite element analysis
was 50. Results of the Dodds and Runyana [2]
experiment and results from the finite element model
for simply-simply supported aluminum pipe were as
follows:

Table 2: Comparison of Results

Pipe Flow Frequency Frequency Error
Velocity, obtained obtained %

m/sec from from
experiment, FE model,

rad/sec rad/sec
1 0 29.59 30.7853 4.04

13.10 26.0996 28.9980 11.1
23.485 24.1116 24.7256 2.54
29.722 18.8 20.4746 8.9

2 0 not obtained 30.7853 -
6.59 29.9052 30.34 1.45

13.973 27.2072 28.7458 5.65
21.433 26.19 25.8049 -1.45

29.6826 21.0615 20.5070 -2.63

Results obtained from the finite element model were
found to be very close to the experimental result with
minimum error. Hence, the model was found to be
validated.

Figure 2: Experimental Results vs Results from
Finite Element Model for Pipe 1

Figure 3: Experimental Results vs Results from
Finite Element Model for Pipe 2

7. Results and Discussion

In this section, sixteen different models were analyzed
and results were compared. Four materials: steel,
CPVC, concrete and aluminum were used for study.
Each four materials pipes were analyzed for four
types of boundary conditions: simply-simply,
clamped-clamped, clamped simply, and clamped-free.
Natural frequency of vibration and critical flow
velocity were determined for each model. Same
parameters used for model validation were used in the
analysis too. Young’s modulus of elasticity for steel,
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CPVC and concrete were taken as 207 GPa, 2.9 GPa
and 17 GPa respectively. Density of the steel, CPVC
and concrete are 8000 kg/m3, 1550 kg/m3 and 2400
kg/m3 respectively. Total mass per unit length of the
steel, CPVC and concrete pipe system were 1.386
kg/m, 0.574 kg/m and 0.679 kg/m respectively.

7.1 Aluminum Pipe

Aluminum pipe having the identical size and
dimensions was analyzed for four types of boundary
conditions. The variation of fundamental natural
frequency with the fluid flow velocity is shown in the
graph below.

Figure 4: Results Comparison of Aluminum Pipe

The effect of the flowing fluid is to reduce the
stiffness and to increase the damping as the flow
velocity increases. As a result, frequency of vibration
decreases as fluid flow velocity increases. At certain
velocity, frequency becomes zero, which is called
critical flow velocity. At critical flow velocity pipe
becomes unstable. From the above results, it is seen
that aluminum pipe shall be stable for large range of
flow velocity against flow induced vibration in
clamped-clamped condition and shall be stable for
small range of flow velocity against flow induced
vibration in clamped-free condition. Natural
frequency of vibration and critical flow velocity of
aluminum pipe from direct method (DM) and finite
element method (FEM) at different conditions are as
follows.

Table 3: Natural Frequency and Critical Flow
Velocity of Aluminum Pipe

End Natural Critical
condition frequency velocity

rad/sec m/sec
DM FEM DM FEM

Simply-simply 31.11 30.78 41.25 41
Clamped-clamped 70.51 69.77 82.51 81.60
Clamped-simply 48.60 48.08 59.07 58.36
Clamped-free 11.08 10.96 20.62 16.96

7.2 Steel Pipe

Steel pipe of identical size and dimensions was used
in four different boundary conditions. Variation of
fundamental frequency of vibration with the fluid flow
velocity is shown in graph below.

Figure 5: Results Comparison of Steel Pipe

Steel pipe shall be stable for large range of flow
velocity against flow induced vibration in
clamped-clamped condition and shall be stable for
small range of flow velocity against flow induced
vibration in clamped-free condition. Natural
frequency of vibration and critical flow velocity from
direct method (DM) and finite element method (FEM)
in each four condition for steel pipe are as follows:
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Table 4: Natural Frequency and Critical Flow
Velocity of Steel Pipe

End Natural Critical
condition frequency velocity

rad/sec m/sec
DM FEM DM FEM

Simply-simply 39.00 38.59 71.49 70.72
Clamped-clamped 88.37 87.47 143.01 141.43
Clamped-simply 60.92 60.28 102.39 101.21
Clamped-free 13.89 13.74 35.75 31.76

7.3 Chlorinated Poly-Vinyl Chloride (CPVC)
Pipe

Relationship between the fundamental natural
frequency of vibration and the fluid flow velocity is
shown in the figure below:

Figure 6: Results Comparison of CPVC Pipe

From the above figure, it is found that CPVC pipe
shall be stable for large range of flow velocity in the
clamped-clamped condition and shall be stable for
small range of flow velocity in the clamped-free
condition against flow induced vibration. Natural
frequency of vibration and the critical flow velocity
from direct method (DM) and finite element method
(FEM) in each four types of boundary conditions for
CPVC pipe are as shown below:

Table 5: Natural Frequency and Critical Flow
Velocity of CPVC Pipe

End Natural Critical
condition frequency velocity

rad/sec m/sec
DM FEM DM FEM

Simply-simply 7.13 7.05 8.46 8.4
Clamped-clamped 16.15 15.98 16.93 16.74
Clamped-simply 11.13 11.01 12.12 12
Clamped-free 2.54 2.2114 4.23 3.36

7.4 Concrete Pipe

Concrete pipe of identical size and dimensions is
analyzed in four types of end conditions. Variation of
fundamental frequency of vibration with fluid flow
velocity is as follows:

Figure 7: Results Comparison of Concrete Pipe

As in the previously used materials, concrete pipe
shall be stable for large range of flow velocity against
flow-induced vibration in clamped-clamped condition
and it shall be stable for small range of flow velocities
against flow-induced vibration in clamped-free
condition. Natural frequency of vibration and critical
flow velocity from direct method (DM) and finite
element method (FEM) in each case of concrete pipe
are as follows:

731



Modeling and Analysis of Flow Induced Vibration in Pipes Using Finite Element Approach

Table 6: Natural Frequency and Critical Flow
Velocity of Concrete Pipe

End Natural Critical
condition frequency velocity

rad/sec m/sec
DM FEM DM FEM

Simply-simply 15.87 15.70 20.49 20.27
Clamped-clamped 35.96 35.58 40.98 40.53
Clamped-simply 24.79 24.52 29.34 28.99
Clamped-free 5.65 5.59 10.24 8.36

8. Conclusions

The effect of the flowing fluid was to reduce the
stiffness and to increase the damping as the flow
velocity increases. As a result, fundamental frequency
of vibration decreases as fluid flow velocity increases.
At certain flow velocity, fundamental natural
frequency of vibration was found to be zero. This flow
velocity corresponding to zero fundamental frequency
of vibration is critical flow velocity. At this flow
velocity pipe becomes unstable. Natural frequency of
vibration and critical flow velocity were found to be
very high for clamped-clamped steel pipe as 87.47
rad/sec and 141.43 m/sec respectively and very low
for clamped-free CPVC pipe as 2.2114 rad/sec and
3.36 m/sec respectively. In comparison of the results,
it was found that pipes of identical size and dimension
but different materials were stable for large range of
flow velocities in clamped-clamped conditions and
very weak in clamped-free condition against flow
induced vibration. The order of the stability with
respect to end conditions was found to be
clamped-clamped, clamped-simply, simply-simply
and clamped-free from higher stability to lower
stability. By comparing the results for the pipes
having same size and dimensions with respect to the
material, steel pipes were found to be stable for large
range of flow velocity and CPVC pipes were found to
be stable for small range of flow velocities against
flow induced vibration. The order of the stability with
respect to the material was found to be steel,
aluminum, concrete and CPVC from higher stability
to lower stability.
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