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Abstract
Vibration is an important factor affecting the performance, reliability and life of the turbine. Most of the
researches on vibration of Pelton turbine are mainly based on assumptions of rigid rotor bearings. This
paper focuses on the free transverse vibration analysis due to flexible rotor bearings at the support ends. An
analytical model is developed based on rigid foundation, flexible bearings, flexible and continuous shaft and
rigid disk. The stiffness of each SKF 1206 EKTN9 + H206 self-aligning ball bearing with adapter sleeve at
operating speed of 1500 rpm is computed to be 47.487 MN/m. Then this stiffness value is used in boundary
conditions of non-rotating uniform shaft to determine the mode shapes. Using assumed mode method, the
kinetic energies and strain energies of the shaft and the disk and non-conservative work of the bearings are
then derived in the form of displacements and gradient and rate of displacements.These general expressions
of the system’s energies and work are substituted in Lagrange’s equation of motion(EOM) to finally get the
system’s EOM. The solutions as the natural frequencies of vibration are determined taking first three modes.
Engine order(EO) encompassing 16 number of buckets is passed from origin intersecting frequency lines so
the critical frequencies are found to be 316.365, 316.373, 1972.256, 2059.466, 4845.386 and 4845.619 rpm
with overestimation of 1.15%, 1.14%, 15.21%, 12.90%, 5.37% and 5.35% respectively from numerical results of
modal analysis in ANSYS.
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1. Introduction

From early days, water wheels are used to extract
mechanical energy. In the 1870s, Lester Allan Pelton
modified the water wheel to extract electrical energy
which is now known as Pelton wheel or Pelton turbine
[1]. Many factors affect the performance of the
turbine. Vibration is an important factor affecting the
performance, reliability and life of the turbine. If the
operating speed of turbine matches with critical
frequencies, resonance will occur and can cause
failure [2]. Thus, the study of vibration is essential.

Very less work has been done in the field of the
dynamic behavior of Pelton turbines and their effects
in operation and design [3]. Most of the work done
are mainly based on the vibration analysis of Pelton
turbine considering rigid rotor bearings. But rotor
bearings at the support are not rigid and can result in
damping and stiffness effects. Considering support

bearings rigid one will be very simplified and hence
may not lead to accurate result.

An analytical model considering flexible rotor bearings
at the supports is developed which is used to calculate
natural frequencies of the system.

2. Research Methodology

For the mathematical modelling of the Pelton turbine
system, the components necessary for dynamic
analysis are first determined and modelled in terms of
their dynamic properties. Then the stiffness of
bearings are calculated which are substituted in mode
shapes. The stiffness and mode shapes are then
substituted in systems energies and work. The
energies and work are then put into Lagrange’s
equation of motion to get the system’s equations of
motion. The equations are solved to obtain natural
frequencies as the solutions. The obtained analytical
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results are finally compared with the numerical results
from modal analysis of ANSYS. The analytical and
numerical results are also plotted in the form of
Campbell diagrams [4].

Figure 1: Research Methodology

3. Mathematical Model

Only, the transverse vibration of the system is
considered ignoring the longitudinal and torsional
effects. The transverse axes are X- and Y-axes while
the longitudinal axis is Z-axis. The displacements in
the transverse directions are u(z,t) and v(z,t).

Figure 2: Modelling of the System

The rotordynamic components of Pelton turbine
system are foundation, bearings, shaft and disk. The
foundation is assumed to be rigid so its dynamic
analysis is not required.

The bearings at the supports are taken to be flexible.
The rotation of the shaft exerts radial force on the inner
race. Due to this, the inner race is displaced resulting
in stiffening of the rolling elements. In case of free
vibration, equal radial forces act in all directions and
the stiffness in both transverse directions are equal.

i.e. kxx = kyy

The variation of non-conservative work of each bearing
is then given by [4]

δWnc =−kxxuδu− kyyvδv (1)

The shaft is assumed to be flexible and continuous so
its kinetic and strain energies are [4]
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1
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LS∫
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where u̇ denotes the time derivative of u and u′′ denotes
the double derivative of u with respect to z.

The disk is considered to be a rigid lumped mass at
the center of the shaft so the strain energy is negligible
while its kinetic energy is [4]
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[
1
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1
2

IDxx(ω
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x +ω

2
y )

+
1
2

IDzzω
2
z

]
z=L/2

(4)

3.1 Stiffness of bearings

The bearings for the given system are SKF
self-aligning ball bearings with an adapter sleeve. The
designation is 1206 EKTN9 + H206. The following
formulae have been adapted from [5]

External radial force (Fex) = kr
(

νN
1000

)2/3
(

dm
100

)2

Load zone (ψl) = cos−1
(

cr
xmcos(γ)

)
Contact deformation δ (ψ) = xmcos(γ)cos(ψ)− cr

Compressive load F(ψ) = kpioδ 3/2

Internal radial force (Fin) =
Z
∑
j=1

F(ψ j)

Stiffness (kb) = 1.5 Z
4.37 cos(γ)kpio[xmcos(γ)− cr]

0.5

Following parameters have been taken from SKF
bearing catalogue.
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Table 1: Bearing Parameters

SN Parameters Values
1 Minimum load factor (kr) 0.04
2 Number of balls (Z) 28
3 Internal radial clearance (cr) 0.033 mm
4 Viscosity of lubricant (ν) 70 mm2/s

Table 2: Calculated Parameters

SN Parameters Units Values
1 dm mm 46
2 γ degrees 8.35
3 kpio kN/mm1.5 49.073

Where, dm = bearing mean diameter, γ = position of
ball element with respect to vertical, kpio =
deformation constant

Figure 3: Stiffness of bearings

For operational speed of 1500 r/min, the external
radial force is calculated to be 188.38 N. This force
causes the displacement of inner race alongwith
deformation of the ball elements. The external force is
balanced by stiffening of certain number of ball
elements. To balance the external and internal forces,
a value of displacement (xm > cr) is chosen and load
zone is calculated along with number of ball elements
under loading. The contact deformation of each
loaded ball element is calculated and correspondingly
the compressive force felt by each ball is also
calculated. These forces are summed up to match
external force. If the forces are not balanced, another
value of xm is chosen and the process is repeated until
the forces are balanced [5].

As shown in figure 3, after a number of trials, the final
value of xm is found to be 0.04382 mm which gives
the stiffness value to be 47.487 MN/m.

3.2 Mode Shapes

The mode shape for free transverse vibration of a non-
rotating uniform shaft element is given by [6]

U(z) =Acos(β z)+Bsin(β z)

+Ccosh(β z)+Dsinh(β z)
(5)

With boundary conditions:

Moments : ESISxx
∂ 2U
∂ z2 = 0; at z= 0 and z= LS (6)

Shear Forces : ESISxx
∂ 3U
∂ z3 = akbU ; a =−1 at z = 0

and a =+1 at z = LS

(7)

Using boundary conditions (6) and (7) in expression
(5), four equations are obtained which after solving
give the frequency equation.

sin(βLS)+α[cos(βLS)− cosh(βLS)]

sinh(βLS)+α[cos(βLS)− cosh(βLS)]

=
[2αcosh(βLS)− sinh(βLS)]−2α2M+αP
[2αcos(βLS)+ sin(βLS)]−2α2M+αP

(8)

where α = ESISxx
2kb

β 3; M =
[sin(βLS)+ sinh(βLS)]; P = [cos(βLS)+ cosh(βLS)]

The values for the model are:

ESISxx = 10.397kNm2; LS = 0.519m

Cross multiplying equation (8) and making RHS zero,
the frequency expression is obtained which after
plotting gives infinite values of β .

Figure 4: Frequency equation plot

The mode shape (5) then converts to

Un(z) =sin(βnz)+mnsinh(βnz)

+αn(1−mn)[cos(βnz)+ cosh(βnz)]
(9)
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where

mn =
sin(βnLS)+αn[cos(βnLS)− cosh(βnLS)]

sinh(βnLS)+αn[cos(βnLS)− cosh(βnLS)]

The values of βn, αn and mn for three modes are given
in table 3:

Table 3: Mode Shape Parameters

Modes (n) βn αn mn

1 5.9619 0.0232 -0.0216
2 11.3744 0.1611 -0.1933
3 15.7109 0.4245 -0.7370

The first three mode shapes from analytical results are
in figure 5:

Figure 5: First three mode shapes

The modal analysis results from Analysis Systems
(ANSYS) are shown in figure 6:

Figure 6: First three mode shapes from ANSYS

From figures (5) and (6), the mode shapes results

from analytical model and ANSYS model are in good
approximation with each other.

The values of higher mode shapes at the boundaries
are higher because at higher modes, α is higher and
the bearing stiffness(kb) at the boundaries is no longer
able to fully sustain the shaft stiffness(ESISxxβ 3/2).

For the simplification of energy expressions, following
conditions of the mode shapes can be used.

For i 6= j,

LS∫
0

UiU jdz = 0

LS∫
0

d2Ui

dz2
d2U j

dz2 dz =− kb

ESISxx
[UiU j(0)+UiU j(LS)]

(10)

About z = LS/2 (where the disk is located),

Un(z) = even f unction f or odd n

Un(z) = odd f unction f or even n
(11)

At z = LS/2,

Un(z) = 0 f or even n
dUn

dz
(z) = 0 f or odd n

(12)

With kb → ∞, the case becomes that of rigid rotor
bearings and the mode shape equation (9) converts
to sin(πz/LS) which is in accordance with the mode
shape for rigid bearings found in [7].

3.3 System’s Energies and Work

The final frame of reference gained by disk and shaft
is through a sequence of rotations given by a set of
Euler angles 123. The rotations are about X-, Y- and
Z-axes in order [8].

Figure 7: Rotation angles achieved by disk and shaft

The rotational speed of the shaft and disk is [4]

ω = φ̇X + θ̇Y1 + ψ̇Z2
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where X , Y1 and Z2 denote unit vectors along X, Y1
and Z2 axes

ωx

ωy

ωz

=


φ̇cosψcosθ + θ̇sinψ

−φ̇sinψcosθ + θ̇cosψ

φ̇sinθ + ψ̇


Since θ ≈ 0, φ ≈ 0, sinθ ≈ θ and cosθ ≈ 1

∴


ωx

ωy

ωz

=


φ̇cosψ + θ̇sinψ

−φ̇sinψ + θ̇cosψ

φ̇θ + ψ̇

 (13)

Since the mode shapes in both transverse directions
are same in the case of free vibration as the stiffness of
bearings are equal in both directions. Using assumed
mode method [9], the transverse displacements are in
the form of

u(z, t) =
∞

∑
n=1

Un(z)qun(t)

v(z, t) =
∞

∑
n=1

Un(z)qvn(t)
(14)

Figure 8: Relation between angular and transverse
displacements

The angular and transverse displacements are related
as [4]

φ =−∂v
∂ z

=−
∞

∑
n=1

∂Un

∂ z
(z) qvn(t)

θ =
∂u
∂ z

=
∞

∑
n=1

∂Un

∂ z
(z) qun(t)

(15)

After substitutions of relations (13) to (15) in the
energy and work expressions (1) to (4) and use of
conditions (10) to (12),

The energy expressions (2) and (3) become
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(16)

And
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1
2

ESISxx
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∞

∑
n=1

(
U ′′n (z)

)2 [
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The kinetic energy of the disk (4) converts to
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With the use of kb = kxx = kyy, the variation of the
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non-conservative work of the bearings (1) becomes

δWnc =−kb

∞

∑
i=1

(Ui(0))2[qui(t)δqui(t)+qvi(t)δqvi(t)]

− kb

∞

∑
i=1

(Ui(LS))
2[qui(t)δqui(t)+qvi(t)δqvi(t)]

− kb

∞

∑
i6= j

[UiU j(0)+UiU j(LS)]qui(t)δqu j(t)

− kb

∞

∑
i 6= j

[UiU j(0)+UiU j(LS)]qvi(t)δqv j(t)

(19)

3.4 Equations of Motion

The Lagrange’s equation of motion is given by [10]

d
dt

(
∂L

∂ q̇rs

)
− ∂L

∂qrs
=

∂Wnc

∂qrs

where r = u,v represents the directions of transverse
displacement, s = 1,2, ... represents the mode shape

And Lagrangian (L) = T −V

∴
d
dt

(
∂TD

∂ q̇rs
+
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∂ q̇rs
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)
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=
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(20)

Substituting the expressions (16) to (19) into (20), the
system’s EOMs are

∞
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And

∞
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The values of various parameters of the model are:

Table 4: Model Parameters

Parameters Values
Rotational speed (Ω) 157.08 rad/s
Mass of disk (mD) 10.654 kg
Mom. of iner. of disk (IDxx) 210 kgcm2

Pol. mom. of iner. of disk (IDzz) 334 kgcm2

Length of shaft (LS) 519 mm
Density of shaft (ρS) 7860 kg/m3

Cross-sec. of shaft (AS) 8 cm2

2nd mom. of area of shaft (ISxx) 51472 mm4

Pol. mom. of area of shaft (ISzz) 102944 mm4

Elastic modulus of shaft (ES) 202 GPa
Stiffness of bearing (kb) 47487 kN/m

4. Results and Discussion

Taking three modes, the transverse displacements (14)
become

u(z, t) =U1(z)qu1(t)+U2(z)qu2(t)+U3(z)qu3(t)

v(z, t) =U1(z)qv1(t)+U2(z)qv2(t)+U3(z)qv3(t)
(23)

And the system’s equations of motion (20) and (21)
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become

m11q̈u1(t)+m13q̈u3 + c11Ωq̇v1 + c13Ωq̇v3 + k1qu1 = 0

m11q̈v1(t)+m13q̈v3− c11Ωq̇11− c13Ωq̇u3 + k1qv1 = 0

m22q̈u2(t)+ c22Ωq̇v2 + k2qu2 = 0

m22q̈v2(t)− c22Ωq̇u2 + k2qv2 = 0

m31q̈u1(t)+m33q̈u3 + c31Ωq̇v1 + c33Ωq̇v3 + k3qu3 = 0

m31q̈v1(t)+m33q̈v3− c31Ωq̇11− c33Ωq̇u3 + k3qv3 = 0
(24)

where

m11 = 12.59; m13 =−13.11 = m31;

m22 = 5.03; m33 = 19.91 kg;

c11 = 0.0071; c13 =−0.0142 = c31;

c22 = 4.4916; c33 = 0.0726 kg;

k1 = 3.571; k2 = 57.344; k3 = 408.824 MN/m

Since the system of differential EOMs (24) are
homogeneous linear ODEs with constant coefficients,
the solutions are of the form [11]

qu1(t) = Qu1est ; qu2(t) = Qu2est ; qu3(t) = Qu3est ;

qv1(t) = Qv1est ; qv2(t) = Qv2est ; qv3(t) = Qv3est

(25)

With the substitution of (25) into (24), the EOMs
convert into

(m11s2 + k1)Qu1 +m13s2Qu3 + c11ΩsQv1

+ c13ΩsQv3 = 0

− c11ΩsQu1− c13ΩsQu3 +(m11s2 + k1)Qv1

+m13s2Qv3 = 0

(m22s2 + k2)Qu2 + c22ΩsQv2 = 0

− c22ΩsQu2 +(m22s2 + k2)Qv2 = 0

m31s2Qu1 +(m33s2 + k3)Qu3 + c31ΩsQv1

+ c33ΩsQv3 = 0

− c31ΩsQu1− c33ΩsQu3 +m31s2Qv1

+(m33s2 + k3)Qv3 = 0

(26)

Since the first and the third modes are coupled and the
second mode is independent of the two, the two
systems must be independently solved. For the
existence of non-trivial solution, the determinants of
the two systems of (26) must separately vanish [11]
resulting in following 4- and 8- degree equations in
’s’.

25.29 s4 +(5.77∗108 +21.88 Ω) s2 +3.29∗1015 = 0

and 6213 s8 +8.23∗1011 s6 +(2.75∗1019

−9.97∗10−8
Ω) s4 +1.52∗1025 s2 +2.13∗1030 = 0

(27)

For the operating speed of 1500 rpm i.e. Ω = ψ̇ =
157.08 rad/s, the roots of equation (27) are

s1,2 =±3304.548 j; s3,4 =±3450.671 j

s5,6 =±530.074 j, s7,8 =±530.085 j,

s9,10 =±8118.523 j, s11,12 =±8118.914 j,

so that s = jω

Therefore, the displacement solutions from (23) and
(25) are

r(z, t) =U1(z)
8

∑
p=5

Qr1pe jωpt +U2(z)
4

∑
p=1

Qr2pe jωpt

+U3(z)
12

∑
p=9

Qr3pe jωpt

which can be written in the form of

r(z, t) =U1(z) ∑
p=5,7

Cr1p sin(ωpt +λp)

+U2(z) ∑
p=1,3

Cr2p sin(ωpt +λp)

+U3(z) ∑
p=9,11

Cr3p sin(ωpt +λp)

So the natural frequencies of vibration in rad/s and
Hz along with the critical speed in rpm for engine
order(EO) of 16 are

Table 5: Analytical Results

Modes ω(rad/s) f (Hz) Ncr(rpm)

First (BW) 530.074 84.364 316.365
First (FW) 530.085 84.366 316.373

Second (BW) 3304.548 525.935 1972.256
Second (FW) 3450.671 549.191 2059.466
Third (BW) 8118.523 1292.103 4845.386
Third (FW) 8118.914 1292.165 4845.619

The results from modal analysis of ANSYS along with
the deviation of analytical results from ANSYS results
are given in table 6.

Table 6: ANSYS Results

Modes f (Hz) Ncr(rpm) Error (%)
First (BW) 83.403 312.761 1.15
First (FW) 83.417 312.814 1.14

Second (BW) 456.490 1711.838 15.21
Second (FW) 486.420 1824.075 12.90
Third (BW) 1226.200 4598.250 5.37
Third (FW) 1226.500 4599.375 5.35
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The plot of natural frequencies at different rotational
speeds are shown in the following Campbell diagrams
(9) to (11):

Figure 9: Variation of first mode natural frequency
with rotational speed

Excitation line or Engine Order (EO) line intersects the
natural frequency lines, the intersection being denoted
by ellipses. The horizontal axis values of these ellipses
correspond to the critical speed of the system [12].
Near 1500 r/min, EO of 3 and 4 are risky for the first
mode so these EOs must be prevented.

Figure 10: Variation of second mode natural
frequency with rotational speed

For the given model, there are 16 buckets and EO of
16 crosses the first mode natural frequency near 300
r/min and the second mode near 2000 r/min. Even if
300 r/min may not be risky but speed range near 2000
r/min may be fatal for the system.

Figure 11: Variation of third mode natural frequency
with rotational speed

The 16 EO line crosses the third mode line at speed
higher than 3000 r/min. But EO of 28 due to number
of rolling ball elements in each bearing crosses the
third mode line near 2950 r/min.

The critical speeds from analytical model and
numerical model corresponding to the EO of 16 have
been provided in table (5) and (6). Table (6) gives the
deviation of analytical results from numerical results
implying that the critical speeds have been
overestimated analytically.

5. Conclusion

The frequencies of vibration of central axis considering
flexible rotor bearings at the support ends of the Pelton
turbine are determined for the first three modes. At first
mode, the frequecies are 530.074 rad/s and 530.085
rad/s corresponding to backward and forward whirl
respectively. The corresponding values for the second
mode are 3304.548 and 3450.671 while the values
for the third mode are 8118.523 and 8118.914 rad/s.
Different EO lines are passed from origin to find EO
of 3 and 4 to be intersecting first mode frequency
line at the operating speed. While EO encompassing
16 number of buckets intersects second mode near
2000 rpm respectively indicating the operation range
near these speeds must be prevented avoiding possible
failure of the system. Since, the 16 EO line doesn’t
intersect frequency line below 3000 r/min, the third
mode critical frequency is high above the operating
speed and is out of risk.
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