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Abstract
The study of dynamic behavior of rotating parts have significant role to the operating mechanism and failure
associated with vibration. Shaft and runner are the main component of water turbines which are subjected
to highly difficult working conditions. When rotors are operating at high speeds centrifugal actions cause to
increase intensity of vibration. During the manufacturing and installation dynamics analysis is necessary.
This research work was focused on modeling of Pelton turbine unit; which cover dynamic behavior of overhung
rigid runner on circular flexible shaft, which was supported by rigid bearings on one end and enable to
determine the natural frequency of the system by using different models. The unit was modeled as discrete
and continuous systems. Simplified Jeffcott rotor model and Rayleigh’s energy method: effective mass models
were used for the discrete system models. The model for continuous system was developed by calculating the
kinetic and potential energy of the runner –bucket and shaft. The governing equations were formulated by
using Langrange’s equation and solved analytically by using Rayleigh-Ritz method.
The critical frequencies were determined for developed mathematical model based on the real Pelton turbine
unit installed in Fluid Mechanics Laboratory of Department of Automobile and Mechanical Engineering ,
Thapathali campus. The critical frequencies for continuous system model were found to be 1470, 97rad/sec
and 2139.45rad/sec for backward and forward whirl.It values using simplified Jeffcott rotor model was
1905.08rad/sec.Similarly, the values of critical frequencies by Rayleigh’s Energy Method: Effective mass
models were calculated to be 1875.65rad/sec and 1864.31rad/sec by considering effective mass of shaft
and spring respectively. The continuous shaft-runner –bucket system can be model as discrete system with
effective mass with fixed support at end of shaft to determine the critical frequencies of unit with reasonable
accuracy. The model is simulated in ansys the critical frequencies for backward whirl and forward whirl is
found 1396rad/sec and at 1875rad/sec at first mode of vibration which is close to analytical result.
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1. Introduction

Rotor dynamic study the transverse/lateral(bending)
longitudinal(axial), and torsional vibration of the
rotating shafts and minimizing the probality of failure
due to vibration.The possible forces responsible for
the vibration increase in hydro turbine may be
mechanical, hydraulic and electrical.study of dynamic
response of pelton turbine unit, one of the widely used
water turbines worldwide, for the improvement in
performance as well as reliability, stability and the life
span of the component of the hydraulic power
system.if the frequency of external excitation concide
with one of the natural frequencies of the system,
resonance occurs leading to the dangerously large

oscillations and may cause excessive deflection and
failure.The failure of structures like [1] buildings,
bridges, turbines, and airplane wings etc are
associated with the occurrence of resonance. Hence,
the calculation of the natural frequencies of the
system is one of the important part of vibration study
and analysis The model for the study of dynamic
behavior of rotor and rotating part was first developed
by german engineer august fopple in 1895 and
American Henry Homan Jeffcot in 1919.This model is
commonly known as the Fopple/Jeffcot rotor or fixed
jeffcot rotor, which consisted of a single rigid disc
centrally located on the flexible shaft of constant
circular cross section supported by bearings placed at
each end of shafts.the mass of the shafts for the model
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assume negligible.Fopple considered the system
without damping but jeffcot considered the effect of
damping in his research.Their analysis demonstrated
that the supercritical operation was possible and
stable.This model was oversimplication of the real
world rotor systems, but it gave good understanding of
the different characteristics of the real world rotors
behavior like critical speeds, gyroscopic action and
internal damping.

2. Mathematical Model Development
and Analytical Solution

solution of most engineering problem require
mathematical modeling physical system. The Basic
component considered for the model development
were runner-bukker assembly and flexible shaft
supported by rigid bearings at on ends. The models
were development considering the system as discrete
and continuous systems and focused for the output of
natural frequency.

Assumptions

• The model is assumed to be linear and discrete
system for most of the models.
• Pelton turbine unit is the combination of

shaft-runner-buckets-felxible bearings system
but flexible shaft-rigid disk-rigid bearing are
considered for model development to reduce
the level of complexities.

2.1 Discrete System Models

Jeffcot rotor model and Rayleigh’s energy method:
Effective mass model were used for the discrete system
models.

2.1.1 Jeffcot Rotor Models

For the shaft with fixed at one end, the stiffness of the
shaft is given by the expression as (Rao, 2013).

ks =
3EI
L3

Similarly,

ωn =

√
Ks

MD
=

√
3EI

L3MD
I =

πD4

64
(1)

2.1.2 Rayleigh’s Energy Method: Effective Mass
Models

The principle of conservation of energy (kinetic and
strain energy) is used to evaluate the effective mass
of the system. This method is employed for the lower
degrees of freedom systems, mostly single degree of
freedom systems.

A mass MD of the rotor disk (runner-buckets
assembly) is mounted at the axial end of the shaft of
stiffness Ks. The mass of the shaft is MS and length L.
For the fixed supported uniform shaft, also
considering the effective mass of the shaft, the
undamped natural frequency of the system is
expressed as (Thomson and Dahlen, 2005)

ωn =

√
Ks

(MD +0.235ms)
=

√
3EI

(MD +0.235ms)L3

(2)

A mass MD of the rotor disk is assumed as resting on
a heavy spring (shaft) of stiffness Ks. The mass of the
spring (shaft) is MS and L is the length of
un-stretched spring. The natural frequency of the
equivalent spring-mass system, considering the
effective mass.of spring and assuming the shaft to be
rotating in simple harmonic motion, is defined as
(Kelly, 2012).

ωn =

√
Ks(

MD + ms
3

) =√ 3EI(
MD + ms

3

)
L3

(3)

2.2 Continuous System Model

Any rotation can be described by three successive
rotations about linearly independent axes and these
rotations are Euler angles. The positions, angular
velocities and angular accelerations of a body that
rotates about a fixed point, such as a gyroscope, and
body that rotates about its center of mass (an aircraft,
shaft of turbine etc.) can be described by Euler’s
angles (Ardakani and Bridges, 2010).

X, Y and Z is fixed inertial frame and x, y and z is
the body fixed axis. Firstly, the rotation is counter
clockwise from an initial XYZ system about the Z, z1
axis as shown in Figure 2.1(a) into x1, y1, z1 system by
an angle φ .
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Figure 1: rotational matrix for 312 euler angles

2.2.1 Rotational Matrix for 3-1-2 Euler Angle

∴

x
y
z

 =

cosφ cosψ− sinφ sinθ sinψ

−sinφ cosθ

cosφ sinψ + sinφ sinθ cosψ

sinφ cosψ −cosθ sinφ

cosφ cosθ sinθ

sinφ sinψ− cosφ sinθ cosφ cosφ

X
Y
Z


2.2.2 Angular Velocity of xyz Frame

Angular velocity for x , y, z frame

∴

ωx

ωy

ωz

=

−φ cosθ sinψ +θ cosψ

φ sinθ +ψ

φ cosθ cosψ +θ sinψ


2.2.3 Disc

Thus, the kinetic energy of the disk is given by,
TD = 1

2 MD
(
u̇2 + ẇ2

)
+ 1

2

[
IDxxω2

x + IDyyω2
y + IDzzω

2
z
]

Where,
TD – the kinetic energy of disk.
MD –the mass of the disk.
IDxx, IDyy, and IDzz are the moment of inertia about the
principal axes X, Y and Z respectively.
As the disk is assumed to be symmetrical, IDxx = IDyy.

2.2.4 shaft

The K.E. of the shaft is defined for an element and
integrated over the length of the shaft ‘L’. The K.E. of
the shaft is given by the expression,
Ts =

ρA
2
∫ L

0
(
u̇2 + ẇ2

)
dy+ ρlxx

2
∫ 1

0 ω2
x dy+ ρlyy

2
∫ 1

0

ω
2
y dy+

ρlzz

2

∫ 1

0
ω

2
z dy (4)

Where,
TS – kinetic energy of the shaft,
ρ – the mass per unit volume,

A – the cross-sectional area of shaft and it is assumed
to be constant,
I – the area moment of inertia of the shaft
cross-section about the neutral axis and it is also
supposed to be constant. Total kinetic energy of shaft
and disc
T = 1

2 MD
(
u̇2 + ẇ2

)
+ 1

2 lDxx
(
θ̇ 2 + φ̇ 2

)
+

1
2 IDyy

(
Ω2 +2φ̇θΩ

)
+ ρA

2
∫ 1

0
(
u̇2 + ẇ2

)
dy+

ρl
2

∫ 1

0

(
θ̇

2 + φ̇
2)dy+ρILΩ

2+2ρlΩ
∫ 1

0
θφ̇dy (5)

Total potential energy of system is
Total potential energy of the system is,

U = EI
2
∫ 1

0

[(
∂ 2u
∂y2

)
+
(

∂ 2w
∂y2

)2
]

dy

The bearings at the support are considered as rigid and
isotropic with negligible damping

2.2.5 Lagrange’s Equation

Using Lagrange’s equation for the system of rigid
bodies in the form;
d
dl

(
∂T
∂ q̇

)
− ∂T

∂q1
+ ∂U

∂q1
= Fq̇1

Where,
N is the number of degrees of freedom (l ≤ i≤ N).
qi are the system’s generalized independent
coordinates.
Fqi are the generalized forces.
denotes differentiation with respect to time t.

2.2.6 Rayleigh-Ritz Method of Analytical Solution

Rayleigh-Ritz method is also known as assumed
modes method. For proper description of the lateral
vibration behavior of the rotor, it is necessary to write
the displacement u and w of the rotor in terms of
shape function f(y), before applying the expressions
obtained in the Lagrange equation.

f (y)=
{coshβy− cosβy}− coshβ l+cosβ l

sinhβ l+sinβ l (sinhβy− sinβy)
Where,
β l= 1.875

2.2.7 Total kinetic energy of shaft disc assembly

Therefore, the kinetic energy of the disk-shaft
assembly is,
T = TD +Ts

=
[1

2 (4MD +450.3IDxx +0.101ρA+35.7ρI)
(
q̇1

2 + q̇2
2
)

−(450.3IDyy +71.5ρI)Ωq̇1q̇2
T = 1

2 m
(
q̇1

2 + q̇2
2
)
−aΩq̇1q̇2
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Meq. = (4MD + 450.3 IDxx + 0.101 ρ A +35.76ρ I)
a = 450.3 IDyy+ 71.52 ρ I

2.2.8 Total strain energy of shafts –disc assembly

U = EI
2

[∫ L
0 h2 (y)q2

1dy+
∫ L

0 h2 (y)q2
2dy
]

= EI
2 ×5623.26

(
q2

1 +q2
2
)

Where,
k eq =5623.26 EI
Free vibration equation of motion by using
langrange’equation[

m o
o m

][
q̈1
q̈2

]
+ Ω

[
0 −a
a 0

][
q̇1
q̇2

]
+

[
K 0
0 K

][
q1
q2

]
=[

0
0

]

3. Analytical solution of equation of
motion

The Newton’s equations of motion
mq̈1−aΩq̇2 +Kq1 = 0
mq̈2 + aΩq̇1 +Kq2 = 0 Equation takes the form i.e.
q1 and q2 to be a harmonic function,
then q1 and q2are expressed as (Baruh,1999),
q1 = Q1eλ t

q2 = Q2eλ t

characterstics equation by using above eq
m2λ 4 +

(
2mK +a2Ω2

)
λ 2 +K2 = 0

Solution of Equation which is quadratic in Ω2 resulted
as
Ω1 =

√
K

s(sm+a)

Ω2 =
√

K
s(sm−a)

ω = sΩ

Critical speed of the system is defined as,
s=1
Ωcr = ωn

Ω1cr = ω1n =
√

K
(m+a)

Ω2cr = ω2n =
√

K
(m−a)

Where. Ω1cr (ω1n) and Ω2cr (ω2n) are the critical
speeds or natural frequencies of the system for
forward whirl and backward whirl.

4. Result and Analysis

The developed mathematical models were solved
analytically to find the natural frequencies under
undamped free vibration condition of the system. The
results obtained from the analytical solutions by using
the different developed mathematical models were

then analyzed. The developed mathematical models
were solved for the undamped natural frequencies of
the Pelton turbine unit installed with following
specifications

Table 1: Parameter used for calculation of critical
frequency

Parameters Values
Total mass of runner 9.5 Kg
bucket assembly, MD

Mass of shaft, ms 1.28kg
Diameter of shaft, D 40mm
Length of shaft, L 130mm
Density of shaft material, ρ 7860 kg/m3

Young’s Modulus of Elasticity 202Gpa
of the Shaft Material, E
Moment of inertia of shafts, I = 1.25 ×10−7m4

Mass moment of inertia of 0.0192kgm2

disc about X-axis
Mass moment of inertia of 0.038kgm2

disc about Y-axis
Equivalent mass of shaft 48kg
disc assembly, Meq
Gyroscopic effect , a 17kg

4.1 Analytical results

The results from mathematical model were found by
using above parameters

Table 2: results from discrete model

Natural frequency from 1905.08rad/sec
Jeffcott rotor model
Natural frequency from 1875.69rad/sec
considering effective mass
of shaft
Natural frequency from 1864.3rad/sec
considering effective mass
of spring

Table 3: results from continuous model

Natural frequency when 1714.19rad/sec
system is at rest
Critical frequency for 2139.45rad/sec
forward whrilling
Critical frequency for 1470.97rad/sec
backward whrilling
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Figure 2: cambel diagram

4.2 results from simulation

By designing equivalent rotor disc model in solidwork
and imported in ANSYS following results were found.

Table 4: natural frequency and corresponding mode
shape from simulation

Frequency of first mode of vibration 283.06Hz
Frequency of second mode of vibration 286.29Hz
Frequency of third mode of vibration 365.91Hz
Frequency of fourth mode of vibration 1392.4Hz
Frequency of fifth mode of vibration 1399.1Hz
Frequency of six mode of vibration 1600.7Hz

Figure 3: Directional deformation and stress
distribution for First mode of vibration

Figure 4: Directional deformation and stress
distribution for Second mode of vibration

Figure 5: Directional deformation and stress
distribution for Third mode of vibration

Figure 6: Directional deformation and stress
distribution for Fourth mode of vibration
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Figure 7: Directional deformation and stress
distribution for Fifth mode of vibration

Figure 8: Directional deformation and stress
distribution for Sixth mode of vibration

Figure 9: Cambel diagram from ANSYS simulation

5. Conclusion

The model fixed at one end and Rayleigh’s energy
method: Effective mass model for discrete system and
continuous system model has been developed for the
selected Pelton turbine unit.

• The values of critical frequency by using
cantilever model fixed at one end was found to
be 1905rad/sec. Similarly, critical frequencies
by Rayleigh’s energy method: Effective mass
models were 1875.69 rad/sec and 1864.31
rad/sec for fixed supported shaft at end and for
equivalent spring-mass configuration. For
continuous system model, critical frequencies
were found to be 1470.97 rad/sec and 2139.45
rad/sec for backward and forward whirl
respectively.

• The natural frequency of the Pelton turbine unit
by modeling it as a single degree of freedom
discrete system by considering the effective
mass of shaft which was fixed supported at end
i.e.1875.69 rad/sec, provided close result to the
millidegrees of freedom continuous system
model of the unit i.e. 1470.97 rad/sec and
2139.45 rad/sec for backward and forward
whirl respectively. The results from ansys
simulation was 1875rad/sec and 1399rad/sec
respectively which was closed to analytical
solution with reasonable accuracy.
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