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Abstract
Smoothed Particle Hydrodynamics (SPH) has been extensively used to model and simulate free surface flows.
Here, SPH is used to discretize and solve the Euler equations for a simple dam-break case employing fourth
order polynomial smoothing functions for approximating the first derivatives. Repulsive particles are used
to prevent nonphysical boundary penetration and virtual particles to ensure completion of the summation.
Significant improvements in boundary momentum contributions (6.33 MN to 1.27 MN) and impulses (633 Ns
to 63 Ns) are observed as a result reducing the time-step by half and introducing virtual particles. It is also
found that a lower value of Lennard-Jones parameter (D = 24.53 m2/s2 to 4.91 m2/s2) reduces the nonphysical
splashing behavior (0.9 m to 0.48 m). Finally, it is concluded that the choice of smoothing function (for ensuring
similar solver performance) is dependent on the temporal scale of the problem.
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1. Introduction

The numerical description of any flow is done through
the solution of relevant governing partial differential
equations (PDE) by either mesh-based or meshless
methods. The former are always bound in their
accuracy by the choice of underlying mesh [1] and are
limited in only qualitative accuracy when dealing with
multi-phase flows [2]. Dependence of the solution in
mesh is eliminated in entirety by using meshless
methods through robust and unique particle based
description of constituent phases [1].

Meshless method in the form of SPH was first utilized
to model boundaryless galactic phenomenon [3]. Over
the years, several works have realized the potential of
SPH in solving fluid flow problems [1]. The method
itself has underwent several improvements to increase
its accuracy [4] and modifications to accommodate the
definition of boundaries [5, 2].

A robust nature of the method itself allows for an easy
definition of multi-phase flows involving water and
sediment. Owing to the present context of sediment-
laden Nepalese rivers [6] being used for hydropower,
the potential for studying effects of sediment erosion

in turbines using SPH is immense.

Here, we apply the techniques of SPH and particle
method to discretize and numerically solve Euler
equations. The problem is taken to be a dam-break
case as it is simple, popular and easily comparable [2].

Recent studies in this area have revealed the
effectiveness of filtering techniques in reducing
unwanted density oscillations which may adversely
affect the pressure fields and surface profiles [7]. The
preference in using cylindrical particles is prevalent
when using shallow water equations which, however,
comes with a marginal error in local 3D flow
reproduction immediately near the dam-break site [8].
Comparison of non-dimensionalized solver results
with analytical and experimental results have shown
the effectiveness of SPH in this area [9].

2. Methodology

2.1 Mathematical Modeling

When dealing with any flow, the Navier-Stokes
equations need to solved in order to get the solution of
that particular problem. For particle methods, the
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Lagrangian form of these equations are required as
written below.
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Here, σαβ =−pδ αβ + ταβ represents the total stress
tensor with δ as the Dirac-Delta function;
ταβ = µεαβ represents the viscous shear stress with
µ as the dynamic viscosity and ε as the viscous strain
rate. If we consider the flow to be inviscid, then we
can ignore all terms related to ταβ and simplify
Equation (1) into the Euler equations. Furthermore, if
we consider the flow to be non-generative, then we
can also ignore Q to further simplify it.

2.1.1 Integral Approximation

The main principle of SPH lies in the approximation
of a field variable f at a location x using the
corresponding values of f at neighboring locations x′

by ’weakening’ or ’smoothing’ the influence of those
neighboring locations through the implementation of
a compactly defined smoothing kernel function W . f (x)

f ′(x)

=
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Here,

I =
∫

S
f (x′)W (x− x′,h).n̂dx′ (3)

simplifies into the compact support property
(boundary condition) of the smoothing kernel function
which must be zero for x− x′ ≥ h. Also, as seen in
Equation (2), only W needs to be differentiated to W ′

in order to approximate f ′.

2.1.2 Particle Approximation

The integral from in Equation (2) can be converted
into a discrete or a particle form, as shown in
Equation (4), by using a summation, whereby the
value of f for particle i is influenced by the
corresponding values of f for particles j which lie
inside the domain of influence h of the former. The
degree of influence is proportional to W ′(x− x′,h). In
order to make the equations consistent in dimensions,

volume Vj is multiplied in the R.H.S. 〈 f (xi)〉

〈 f ′(xi)〉
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Implementing the concepts of Equation (4) to
discretize the Euler form of Equation (1), we obtain
the following.
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Here, vβ

i j = vβ

i −vβ

j represents the symmetrized form of

velocity. The expressions of Aαβ

i j and Bαβ

i j (both equal
to one another under the current assumption scheme
discussed earlier) in Equation (5) have been expanded
below.
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Figure 1: Particle approximation in SPH

2.2 Numerical Methods

Fourth order polynomials satisfying the conditions of
normalization, compactness, Dirac-delta approach,
positivity, decay, continuity and symmetry are
naturally fit to be used as smoothing kernel
functions [10]. The reproduction of f and f ′ will
naturally be fourth order accurate as these
polynomials satisfy the moment M criteria for
M0,M1,M2,M3 and M4. [10] Likewise, satisfaction of
the same conditions ensures fourth order consistency.
However, since particle approximation (instead of
integral) has been considered (Equation (4) and (5)),
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the consistency is largely determined by the choice of
initial particle distribution.

Based on the above facts, the following non-piecewise
functions have been selected. Note that it is easier to
write W in terms of non-dimensional radial distance
between an interacting pair R = r

h ; where we define

ri j =
√
(xi− x j)

2 +(yi− y j)
2 to be the absolute radial

distance.

2.2.1 Quartic Function [3]

It has a well defined compact support in the range
0≤ R≤ 1 for both first and second derivatives.

W (R,h) = αd (1+3R)(1−R)2 (7)

Where αd is the surface integral parameter whose value
depends on dimension of the problem as follows.

αd =
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2.2.2 New Quartic Function [10]

It has a well defined compact support for the first
derivative in the range 0 ≤ R ≤ 2 but not for the
second derivative. However, it is more accurate due to
a higher center weighting and more stable due to a
smoother second derivative.
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2.2.3 Gradients

For two dimensional case, the gradients of both
smoothing functions have been calculated in
Equations (11) and (12). These can be substituted into
Equation (5) to obtain the fully discrete and
program-ready form of the Euler equations.
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Here, xβ

i j = xβ

i − xβ

j represents the relative position of
i with respect to j.

2.3 Boundary Conditions

We cannot clearly define boundaries in particle
methods, unlike FEM or FVM where boundary
represents a unique physical barrier for a field
variable. Researchers have determined many
workarounds to accurately fix this
limitation [2, 11, 12]. A combination of two such
methods, also shown in Figure 2, where unique
particles are introduced in location of the physical
boundary has been discussed here.

Figure 2: Boundary definition

2.3.1 Repulsive Particles

These particles are located permanently on the
boundary and do not contribute to the summations in
Equation (5). Any real fluid particle must never cross
over these. To ensure this, these particles must repel
any approaching real fluid particle according to a
Lennard-Jones force [5] defined in the following way.

Fβ

i j = D
{(

r0

ri j

)n1

−
(

r0

ri j

)n2
} xβ

i j

ri j
2 (13)

Here, D is a problem dependent parameter
proportional to square of the velocity scale,
n1,n2 = 4,2 and r0 is an optimizable cutoff distance
such that Fi j = 0 when ri j ≥ r0.
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2.3.2 Virtual Particles

These particles are placed immediately outside the
boundary and are updated for every particle iteration.
They are spatial and kinematic mirrors, and
hydrodynamic homologues of real fluid particles
located sufficiently close to the boundaries [2]. Their
function is to simply ensure completeness of the
summations in Equation (5) of particles that are close
to the boundary.

2.4 Program Algorithm

MATLAB has been used for programming the SPH
solver and simulating various cases. The program
follows an iterative calculation process for determining
required derivatives at each time-step after which they
are time-marched using a constant time-interval simple
integration scheme. The general flowchart of the code
is outlined in Figure 3.

Figure 3: Program flowchart
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Figure 4: Initial setup of the particles

2.5 Case Setup

The dam-break problem contains a column of water
which is allowed to free-fall. The domain has got
two free-slip wall boundaries called ‘Wall’ (1 m) and
‘Floor’ (2 m) each with 100 and 200 uniformly spaced
repulsive particles. A square water column (0.25 m2) is
present with 441 uniformly distributed water particles
(∆x = 0.025 m) which are initially assumed to be in
hydro-static equilibrium. The initial particle setup is
shown in Figure 4. Three cases have been setup for
simulation which are Dam Break 1 (DB1), Dam Break
2 (DB2) and Dam Break with Virtual Particles (DBVP).
The hydrodynamic and kernel properties selected for
the three cases have been summarized in Table 1. It is
noted that D ∝ gH [5]. Also, r0 = 0.48∆x [13].

Table 1: Different simulated cases

Case DB1 DB2 DBVP
∆t 0.001 s 0.001 s 0.0005 s
W Quartic New Quartic Quartic
hs 0.3 m 0.6 m 0.3 m

n1, n2 4, 2 4, 2 4, 2
r0 0.48∆x 0.48∆x 0.48∆x
D 5gH 2gH gH

VP × × X
|x− x∗|

ρ,u,v,e 0.001 0.001 0.0001

3. Results and Discussion

3.1 DB1

The results of this case are shown in Figure 5. The
column of water particles is observed to fall towards
the floor as expected. Some of them approaching the
boundary get propelled upwards by repulsive particles
via Lennard-Jones force, as a result of which, no
particle is observed to cross the boundary. A localized
splashing behavior is seen at t = 0.6 s where particles
are observed to nonphysically splash over their initial
maximum height of 0.5 m and reach up-to 0.9 m as
seen in Figure 5b. The front of water column is
observed to traverse a distance of 0.6 m throughout
the simulation duration of 1 s.

The reasons for nonphysical splashing are twofold.
Firstly, the boundary momentum contribution of
repulsive particles is seen to be an average of
6.33 MN for fluid particles closer than r0 = 0.48∆x =
0.012 m. Secondly, the average impulse for those
same particles is determined to be 633 Ns. The former
is caused due to a high value of D = 5gH =
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24.525 m2/s2. The latter is caused due to a coarser
time-step (∆t = 0.001 s) which reduces the number of
intermediary steps available to any water particle
approaching boundary for adjusting and reacting to
such large impulses.
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(c) t = 0.8 s
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Figure 5: Solution of DB1 at different time-steps

3.2 DB2

The results of this case are shown in Figure 6. Similar
to the previous case, no particles have directly
penetrated the boundary. However, unlike DB1 where
a middle column of particles exhibit splashing
behavior, an entire particle front is observed to get
splashed upwards at t = 0.4 s and 0.6 s as seen in
Figures 6a and 6b. The maximum height of the splash
is again larger than expected (0.9 m at t = 0.6 s). The
majority of particles are seen to exhibit a flow like
behavior whereby the water column recedes
downwards and appears to spread over the floor by
0.6 m similar to DB1. Average height of the column,
however, reduces to 0.26 m as seen in Figure 6d.

Compared to DB1, the flow behavior is seen to be
more physical. Firstly, the localized splashing is
eliminated as a result of using New Quartic smoothing
function whose superior domain of influence
discussed in Section 2.2.2 ends up affecting more
particles. Moreover, the improvement in flow
behavior is attributed to a reduction in average
boundary momentum contribution to just 0.89 MN
(average impulse of 90 Ns) which is due to a lower
value of D = 2gH = 9.81 m2/s2 and a larger value of
the smoothing length (hs = 0.6 m).

3.3 DBVP

The computational cost is observed to highly increase
with the introduction of virtual particles. Thus,
reversion of smoothing function from New Quartic
back to Quartic is paramount for maintaining a similar
solver performance.

The results of this case are shown in Figure 7. The
boundary induced splashing phenomenon at t = 0.4 s
and 0.6 s, as seen in Figures 7a and 7b, is significantly
reduced compared to previous cases. Moreover, the
splashing is observed to be uniform and physically
consistent as no particle crosses a maximum height of
0.5 m. Compared to DB2, an even better flow
behavior is seen as the front traverses 0.6 m, recedes
to an average height of 0.2 m in t = 1 s and 2 m along
with 0.15 m of the same in t = 2 s shown in Figures 7d
and 8 respectively.

The massive improvements in flow behavior is largely
contributed by the introduction of virtual particles.
Boundary momentum contribution is found to be an
average of 1.27 MN which is larger than DB2 in spite
of using D = gH = 4.91 m2/s2 because of reverting
back to the less superior Quartic function. However,

121



Numerical Analysis of a Dam-Break Problem Using Smoothed Particle Hydrodynamics with Fourth
Order Polynomial Smoothing Functions

despite being greater, an even finer time-step (∆t =
0.0005 s) is found to reduce the average impulse to
just 63.3 Ns (ten times less than DB1). As a result, the
particles are observed to exhibit smoother flow
behavior due to them getting more intermediary steps
to adjust and react to the boundary impulse.

3.4 Validation and Comparison of Results

For validation, comparing the results of current solver
are compared with experimental data [5] and
previously obtained numerical results [10], it is better
to non-dimensionalize the observations of front and
level of the water column and the elapsed time using
initial height (H0) and characteristic time
(T0 =

√
H0/g) respectively. The comparisons have

been presented in Figure 9. While the trend-line of
front in Figure 9 shows a similar shape to both
experimental and numerical results, ignoring viscous
effects in the simulation has caused the results from
current solver to experience a temporal shift due to the
particles not dissipating their energy quick enough.
The results for level in Figure 9 are observed to be
more satisfactory and don’t experience the temporal
shift. However, oscillations are observed initially due
to the particles interacting conservatively with the
boundary due to a lack of viscosity.

Likewise, the velocity profiles in y-axis obtained from
the current solver at two locations along the flow
when t/T0 = 10 are also compared in Figure 10 with
analytical (Ritter), experimental (Exp) and previously
obtained numerical (Num) results [9]. All positions
have been non-dimensionalized using H0 and
velocities using characteristic wave velocity
(U0 =

√
gH0). It is seen from both cases of Figure 10

that the obtained numerical results from the current
solver show good agreement with analytical,
experimental and existing numerical results for
y/H0 ≥ 0.2 but not for lower regions. The main
reason for this is that the existing numerical results
consider viscous interactions as well. This leads to
strong velocity gradients near the bottom wall
possibly indicating formation of a boundary layer like
region. This is not possible in the results from current
solver as viscosity has not been considered.

4. Conclusion

This study has illustrated the process of discretizing
the Euler equations using SPH in order to numerically
solve a dam-break case. Fourth order smoothing
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Figure 6: Solution of DB2 at different time-steps
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Figure 7: Solution of DBVP at different time-steps

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
X

0

0.2

0.4

0.6

0.8

1

Y

Figure 8: Solution of DBVP at t = 2 s
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Figure 9: Comparison of normalized front and level

functions are used for the required purpose. As a
consequent, the developed MATLAB code is capable
of solving weakly compressible two dimensional
inviscid flows.

It has been concluded from obtained results that the
value of D should be in the order of gH when dealing
with a free surface flow in order to maintain the
boundary momentum contributions at acceptable
levels to prevent nonphysical splashing. Likewise, it
also has been concluded that time-step of the
simulation should be reduced in order to decrease the
repulsive impulse and allow more number of
intermediary steps for particles to smoothly adjust
themselves near the boundary. Moreover, it has been
demonstrated that the introduction of virtual particles
near the boundaries improves flow behavior through a
more pronounced front spreading. Furthermore, New
Quartic function is determined to be more accurate
than Quartic function. However, due to differences in
their domain of influence, their choice to a particular
problem depends on a reciprocal trade-off with
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Ritter DBVP Num, Canelas et al. Exp, Canelas et al.
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Figure 10: Comparison of velocity profiles in y-axis

time-step for maintaining a similar solver
performance. Finally, in spite of the temporal shift
and oscillation inaccuracy of the present solver
concluded to be a result of an inviscid assumption, the
velocity profiles obtained from the solver have been
observed to show reasonable agreement with existing
results.

5. Future Works

A numerical analysis naturally has inherent
limitations governed by the necessary assumptions.
Based on these, several prospects and
recommendations for future works still remain.
Firstly, the flow can be treated as viscid whereby all
the viscous terms in Equation (1) may also be
discretized. Secondly, the developed MATLAB code
may easily be extended into three dimensions.
Thirdly, simultaneous solution of Equation 5 for
another phase can easily convert this solver into
multi-phase which may be used to analyze behavior of
water-sediment flows. Finally, porting the code to a
parallel process for faster simulation times along with
unambiguous definition of virtual particles at
discontinuous boundary locations is still a challenge.
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