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Abstract
This study presents the method to study the forced vibration response of the Pelton turbine unit under rotating
unbalance conditions. Rotating unbalance occurs when the center of mass of the rotating system does
not coincide with it’s geometric center. Due to the inherent imperfections in the manufacturing processes,
some residual unbalance will always be present in the Pelton wheel and shaft. In addition to that, the loss
of mass due to bucket erosion also contributes to the unbalance in the Pelton wheel. The Pelton wheel is
assumed as a rigid disk with lumped unbalance while the shaft, which is assumed as a Euler-Bernaulli beam,
is flexible with continuous eccentricity distributions on orthogonal planes. The shaft is simply supported at
the ends by rigid bearings. The equations of motion are derived by using Lagrange equation of motion from
the energy expressions of the system with the help of assumed modes method. The resulting equations are
coupled non-homogeneous ordinary linear differential equations which are solved for the forced response of
the system.
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1. Introduction

Rotating machinery needs to be continuously
monitored for faults. Faults may be developed in the
system due to various operating conditions or due to
the errors in manufacturing. Rotating unbalance is the
uneven distribution of mass around an axis of rotation.
A rotating body is said to be out of balance when its
center of mass (inertial axis) is out of alignment with
the center of rotation (geometric axis). This unbalance
causes a moment which gives the rotor a wobbling
movement characteristics. The combined effect of
unequal mass distribution along with the radial
acceleration due to rotation creates a centrifugal force
which results in force on the bearings and vibrations
within the system.

Silt erosion of hydro turbine components is one of the
major problems for the efficient operation of
hydropower plants. High content of unsettled silt
particles passes through the turbines during rainy
season resulting in erosion of turbine components.
Buckets, nozzle and needle are the most affected parts
of the impulse turbine [1]. Based upon 20 years of

river discharge data (1960s to 1980s), it was found
that the correlation between water discharge and silt
discharge was statistically highly significant in the
river systems of Nepal [2]. The himalayan rivers
contain excessive quantities of sediment in the form
of hard abrasive particles. Turbines components
exposed to sand-laden water are subjected to erosion
causing reduction in efficiency and life of the turbine
[3]. Thus, the problem of siltation is one of the major
issues in the rivers of Nepal.

The silt particles present in the rivers may erode the
buckets of Pelton turbine. Due to the imperfections in
the manufacturing processes, it is not possible to have
a perfectly balanced shaft and runner-bucket assembly.
So, the combined effect, that results, is the uneven
distribution of mass in the shaft and runner-bucket
assembly. This uneven mass distribution will offset
the center of rotation of both the shaft and runner-
bucket assembly, giving rise to a problem of eccentric
rotation. During eccentric rotation, various unbalanced
forces and moments will act on the system.

Very recently, some researchers have been actively
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involved in the research works relating to the dynamic
response of Pelton turbine unit [4, 5, 6]. Analyzing
for the first mode of vibration, they have studied the
free vibration [4] and forced vibration [5] response
considering the shaft as a Euler-Bernaulli beam. The
complete free and forced vibration analysis has also
been done considering the shaft to be a Timoshenko
shaft [6]. However, the researchers have not
considered rotating unbalance in their mathematical
models. This paper builds upon their works by adding
the effect of unbalances in the mathematical model.

Rotating unbalance creates unnecessary vibrations,
unwanted noise, excessive stress in the turbine parts
and reduces the overall reliability of the machine. So,
a clear understanding of the dynamics of the Pelton
unit under these unbalanced conditions is necessary.
Thus, this paper intends to provide a mathematical
model of the Pelton unit for the first mode of vibration
under the conditions of rotating unbalance.

2. Mathematical Modelling

2.1 Assumptions

The mathematical model is developed only for
transverse vibrations. Axial and torsional vibrations
are not considered in the model. The system is
represented as a rigid disk with lumped unbalance
which is fitted on a flexible shaft with continuous
eccentricity distributions on orthogonal planes. The
shaft is simply supported by rigid bearings at the ends.
Non-linearity is not considered in the analysis.

Figure 1: Shaft and Disk assembly with supports [4]

2.2 Energy expressions of the system

Let the coordinates of the center of rotating system be
u(y, t), v and w(y, t) with respect to the fixed inertial

frame. Since, the disk is considered rigid, only kinetic
energy will be associated with it. On the contrary, both
kinetic and strain energy will be associated with the
shaft since it is considered flexible.

2.2.1 Angular velocity of the runner-buckets
assembly

Using the rotation matrix to relate the inertial frame
coordinates and body frame coordinates, the
components of angular velocity of the runner-buckets
assembly is found as:ωx

ωy

ωz

≈

−φ̇ sinψ + θ̇ cosψ

φ̇θ + ψ̇

φ̇ cosψ + θ̇ sinψ

 (1)

Figure 2: Disk rotating on flexible shafts with
reference frames [5]

2.2.2 Kinetic energy of the disk

Let MD be the mass of the disk, IDxx, IDyy and IDzz be
the moment of inertia about X , Y and Z axis
respectively. Let ψ̇ = Ω be the angular velocity of the
shaft. Then, the kinetic energy of the disk is given as
[7]:

TD =
1
2

MD(u̇2+ ẇ2)+
1
2
[IDxxω

2
x + IDyyω

2
y + IDzzω

2
z ]

(2)

The cross section of the disk is symmetrical which
gives IDxx = IDzz. Then, using equation (1), we have,

TD =
1
2

MD(u̇2 + ẇ2)+
1
2

IDxx(θ̇
2 + φ̇

2)

+
1
2

IDyy(Ω
2 +2φ̇θΩ) (3)
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2.2.3 Kinetic energy of the unbalanced mass in
disk

Let Mu be the unbalanced mass situated at the distance
d from the center of the disk. The expression for the
kinetic energy of the unbalanced disk is given as:

Tud =
Mu

2
(u̇2 + ẇ2 +2Ωdu̇cosΩt

−2ΩdẇsinΩt +d2
Ω

2) (4)

Figure 3: Mass unbalance in disk

2.2.4 Kinetic energy of the shaft

Let ρ be the density of the material of the shaft, A
be the cross-sectional area of the shaft, I1 and I2 be
the polar and diametrical area moment of inertia. The
kinetic energy of the shaft is given by:

TS =
ρA
2

∫ L

0
(u̇2 + ẇ2)dy+

ρI2

2

∫ L

0
ω

2
x dy

+
ρI1

2

∫ L

0
ω

2
y dy+

ρI2

2

∫ L

0
ω

2
z dy (5)

where,

I1 =
∫

A
(x2 + z2)dA

I2 =
∫

A
x2 dA =

∫
A

z2 dA

Let I2 = I, then I1 = 2I. Then, using equation (1), the
above expressions changes to,

TS =
ρA
2

∫ L

0
(u̇2 + ẇ2)dy+

ρI
2

∫ L

0
(θ̇ 2 + φ̇

2)dy

+ρILΩ
2 +2ρIΩ

∫ L

0
θφ̇ dy (6)

2.2.5 Kinetic energy of the unbalanced shaft

If µ(y) be the mass per unit length of the shaft, the
kinetic energy resulting from the eccentricity
distribution of the unbalanced shaft is:

Tus =
∫ L

0

µ(y)
2

[u̇2 + ẇ2 +2 u̇Ω [ez(y)cosΩt

− ex(y)sinΩt]−2 ẇΩ [ez(y)sinΩt

+ ex(y)cosΩt]+Ω
2 (e2

x(y)+ e2
z (y))]dy

The mass per unit length is assumed constant. So, with
that assumption, we can write,

Tus =
µ(y)

2

∫ L

0
[u̇2 + ẇ2 +2 u̇Ω [ez(y)cosΩt

− ex(y)sinΩt]−2 ẇΩ [ez(y)sinΩt

+ ex(y)cosΩt]+Ω
2 (e2

x(y)+ e2
z (y))]dy (7)

where,

ex(x) is the eccentricity distribution with respect to
X-axis.
ez(x) is the eccentricity distribution with respect to
Z-axis.

Figure 4: Mass unbalance in shaft

2.2.6 Strain energy of the shaft

If E be the modulus of elasticity of the shaft material,
the expression for the strain energy of the shaft is given
by:

US =
EI
2

∫ L

0

[(
∂ 2u
∂y2

)2

+

(
∂ 2w
∂y2

)2
]

dy (8)
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3. Equations of Motion

3.1 Assumed Modes Method

Assumed modes method is generally used to solve the
forced vibration problem. In this method, the solution
of the vibration problem of the continuous system is
assumed in the form of series composed of linear
admissible functions φi, which are functions of the
spatial coordinates, multiplied by time-dependent
generalized coordinates qi(t). φi are known trial
functions that satisfy the geometry boundary
conditions and qi(t) are unknown functions of time,
also called generalized coordinates.

3.1.1 Displacement functions for the first mode of
vibration

Using assumed modes method, let us assume the
displacement functions as:

u(y, t) = f (y)q1(t) = f (y)q1

w(y, t) = f (y)q2(t) = f (y)q2
(9)

where, q1 and q2 are generalized independent
coordinates.

3.1.2 Choice of mode shape

The mode shape for simply supported beam is taken
as:

f (y) = sin
(

πy
L

)
(10)

3.2 Lagrange equations of motion

Lagrange equations are used to derive the governing
differential equations of motion for both linear and
non-linear systems. It represents the equations of
motion in terms of its generalized coordinates and can
be solely obtained from the kinetic energy and
potential energy of the system.

d
dt

(
∂T
∂ q̇i

)
− ∂T

∂qi
+

∂U
∂qi

= 0 i= 1,2, ....,n (11)

The use of equation (11) leads for each value of i leads
to n independent differential equations whose solution
provides the time-dependent response of the system.

Using equations (9) and (10) in the energy
expressions, the equations of motion in the following
form is obtained from lagrange equations of motion:

Mq̈1 −C Ω q̇2 +Kq1 =−dA
dt

Mq̈2 +C Ω q̇1 +Kq2 =
dB
dt

(12)

where,

M =

[
MD +Mu +

ρAL
2

+
ρIπ2

2L
+

µ(y)L
2

]
A = Mu d Ω cosΩt +µ(y)Ω

∫ L

0
(ez(y)cosΩt

− ex(y)sinΩt) f (y)dy

B = Mu d Ω sinΩt +µ(y)Ω

∫ L

0
(ez(y)sinΩt

+ ex(y)cosΩt) f (y)dy

C =
ρIπ2

L
(13)

3.3 Equations of motion for different cases

The equations of motions considering disk only, shaft
only and both the disk and shaft will be developed in
this section.

3.3.1 Case I: Inherent mass unbalance in disk

For this case, equation (13) becomes:

M1 =

[
MD +Mu +

ρAL
2

+
ρIπ2

2L

]
A1 = Mu d ΩcosΩt

B1 = Mu d ΩsinΩt

(14)

So, the equations of motion in this case are:

M1 q̈1 −C Ω q̇2 +Kq1 = MD eΩ
2 sinΩt

M1 q̈2 +C Ω q̇1 +Kq2 = MD eΩ
2 cosΩt

(15)

where, e =
Mu d
MD

, is the eccentricity of the disk.

3.3.2 Case II: Mass unbalance present in the shaft

For this case, equation (13) becomes:

M2 =

[
MD +

ρAL
2

+
ρIπ2

2L
+

µ(y)L
2

]
A2 = µ(y)Ω

∫ L

0
(ez(y)cosΩt − ex(y)sinΩt) f (y)dy

B2 = µ(y)Ω

∫ L

0
(ez(y)sinΩt + ex(y)cosΩt) f (y)dy

(16)

So, the equations of motion in this case are:

M2 q̈1 −C Ω q̇2 +Kq1 = I1 Ω
2 sinΩt + I2 Ω

2 cosΩt

M2 q̈2 +C Ω q̇1 +Kq2 =−I2 Ω
2 sinΩt + I1 Ω

2 cosΩt

104



Proceedings of IOE Graduate Conference, 2019-Summer

(17)

where,

I1 = µ(y)
∫ L

0
ez(y) f (y)dy

I2 = µ(y)
∫ L

0
ex(y) f (y)dy

(18)

3.3.3 Case III: Mass unbalance present in both
disk and shaft

For this case, equation (13) becomes:

M3 =

[
MD +Mu +

ρAL
2

+
ρIπ2

2L
+

µ(y)L
2

]
A3 = Mu d Ω cosΩt +µ(y)Ω

∫ L

0
(ez(y)cosΩt

− ex(y)sinΩt) f (y)dy

B3 = Mu d Ω sinΩt +µ(y)Ω

∫ L

0
(ez(y)sinΩt

+ ex(y)cosΩt) f (y)dy (19)

So, the equations of motion in this case are:

M3 q̈1 −C Ω q̇2 +Kq1 = (MD e+ I1)Ω
2 sinΩt

+ I2 Ω
2 cosΩt

M3 q̈2 +C Ω q̇1 +Kq2 = (MD e+ I1)Ω
2 cosΩt

− I2 Ω
2 sinΩt (20)

4. Solutions of Equations of Motion

4.1 Inherent mass unbalance in disk

The solutions to equations (15) are,

q1 =
MD eΩ2

K +(C−M1)Ω2 sinΩt

q2 =
MD eΩ2

K +(C−M1)Ω2 cosΩt
(21)

4.2 Mass unbalance present in shaft

The solutions to equation (17) are:

q1 =
I1 Ω2

(C−M2)Ω2 +K
sinΩt

+
I2 Ω2

(C−M2)Ω2 +K
cosΩt

q2 =− I2 Ω2

(C−M2)Ω2 +K
sinΩt

+
I1 Ω2

(C−M2)Ω2 +K
cosΩt (22)

4.3 Mass unbalance present in both disk and
shaft

The solutions of equations (20) are:

q1 =
(MD e+ I1)Ω2

(C−M3)Ω2 +K
sinΩt

+
I2 Ω2

(C−M3)Ω2 +K
cosΩt

q2 =− I2 Ω2

(C−M3)Ω2 +K
sinΩt

+
(MD e+ I1)Ω2

(C−M3)Ω2 +K
cosΩt (23)

5. Results and Discussion

The calculations are done for the Pelton turbine unit
rated at 1500 RPM. The basic data for disk and shaft
is shown in the following table:

Table 1: Basic data for disk and shaft

Parameters Values
Inner Diameter of disk, D1 0.01 m
Outer Diameter of disk, D2 0.155 m

Density of disk, ρd 7860 kg/m3

Width of the disk, h 0.03 m
Diameter of the shaft, D 0.01 m

Density of shaft, ρ 7750 kg/m3

Length of the shaft, L 0.4 m
Modulus of elasticity of shaft, E 207 GPa

Basic data for mass unbalance in disk:

Mass unbalance in disk, Mu = 0.0001477 kg

Distance of mass unbalance in disk, d = 0.03 m

Basic data for mass unbalance in shaft [8]:

ex(y) = 0.00533 y3 - 0.0016 y2 + 0.000107 y - 1×10−6

ez(y) = 0.00533 y3 - 0.0016 y2 + 0.000107 y - 1×10−6

5.1 Basic parameters for calculation

Using the values above, the parameters in the equations
are:
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A = 7.8539×10−5 m2 e = 1×10−6 m

C = 9.3866×10−5 kg Ω = 157.08rad s−1

I = 4.9087×10−10 m4 MD = 4.43084kg

I1 = 1.728×10−6 I2 = 1.728×10−6

M1 = 4.55273kg M2 = 4.67431kg

M3 = 4.67446kg

IDxx = 7.0132×10−3 kgm2

IDyy = 13.3616×10−3 kgm2

5.2 Time response at different shaft stations

The equations (21), (22) and (23) are used to calculate
the time response in the transverse directions. Using
these equations in equation (9), we get the complete
response of the displacement functions both as a
function of space and time. From that relation, we can
compute the time response at different shaft stations.

Figure 5: Transverse displacement at y = L/4 in
horizontal direction for Ω = 1500RPM

Figure 6: Transverse displacement at y = L/4 in
vertical direction for Ω = 1500RPM

Figure 7: Transverse displacement at y = L/2 in
horizontal direction for Ω = 1500RPM

Figure 8: Transverse displacement at y = L/2 in
vertical direction for Ω = 1500RPM

The observation of plots from figures (5-8) reveals that
the nature of vibrations in both tranverse directions
is sinusoidal but with a certain phase difference with
each other. These are the amplitude response when
the system is rotating freely, for instance, by using an
electric motor. These are the vibrations which will
always be present in the rotating system in the absence
of any external forces unless proper balancing is done.

The difference in the amplitudes of vibration can also
be clearly observed by comparing the responses at
the quarter length and mid length of the shaft. At
the quarter length of the shaft, the influence of disk
unbalance is very less and, thus, shaft unbalance is
dominant there. However, as we move towards the
mid-length of the shaft, the disk unbalance becomes
very dominant and, hence, the amplitudes of vibration
increases.

The amplitude levels of vibration observed in this way
will provide us an insight on how serious is the
problem of rotor balancing. If the amplitudes of
vibration are too large, then, the balancing must be
done as soon as possible.
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6. Conclusion

In this paper, forced response of the Pelton turbine
unit was studied by considering Pelton wheel as a
rigid disk with lumped unbalance, and shaft, as a
Euler-Bernaulli beam, with continuous eccentricity
distributions in orthogonal planes. The governing
differential equations for the first mode of vibration
were found to be a coupled non-homogeneous
ordinary linear differential equations and were solved
to get the displacement functions. For the operating
speed of Ω = 1500RPM, in both tranverse directions,
the peak amplitude at the midspan of the shaft was
found to 3.123µm considering unbalance in the disk
only, 1.586µm considering unbalance in the shaft
only and 4.152µm considering unbalance in both disk
and shaft.

Future Enhancements

This work can be further extended to include the
unbalance in the Pelton wheel due to the loss of mass
during bucket erosion. Moreover, flexible bearings
and flexible disks can be considered to give more
accurate results.
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