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Abstract
This research work was carried out to model the excitation force imparted by water jet in the form of Fourier
series and to determine the forced response of cantilever type Pelton turbine unit analytically by mathematical
model development. Also, the analytically calculated amplitude of forced vibration was compared with result
from the ANSYS simulation and the effect of rotational speed of shaft to the amplitude of vibration was
evaluated.The mathematical model was developed by calculating the kinetic energy of the disk and both
kinetic energy and potential energy of the shaft. Rayleigh-Ritz method was used to exact natural mode of
vibration and Lagrange’s equation to derive the equation of motion for forced condition. Fourier analysis was
done to obtain the function in its exact form. The developed methodologies were followed to find the analytical
solution of dynamic response of selected Pelton turbine unit of 1 kW rated at 1500 RPM. A rigid disk (runner
and buckets assembly) was situated along the end of flexible shaft with rigid and undamped simply supported
bearings at another end of the shaft. Analytically, the amplitudes of vibration of Pelton Turbine unit with single
nozzle in X direction (the direction of water jet) and Z direction were determined and they are compared with
the values generated from the ANSYS simulation.
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1. Introduction

Rotors and rotating parts are key components with
vital role in various engineering applications like
pump, compressors, turbines, generators, fans, marine
drives and many more. The study of dynamic
behavior of these rotors and rotating parts have
significant role to understand the operating
mechanism and failures associated with vibration.
Rotor dynamics study the lateral/transverse (bending),
longitudinal (axial), and torsional vibration of the
rotating shafts with the objective of limiting the
vibration under an acceptable range. Transverse is
mode of rotor dynamics associated with bending of
the rotor and similarly longitudinal is the motion in
axial direction and torsional is twisting around its own
axis of the rotor [1].

Parts of rotor-blade systems are subjected to highly
hostile working conditions. Thus, the design and
manufacturing challenge is concerned with the
improvement in performance, life span and weight

reduction without loss of reliability. The possible
forces responsible for the vibration increase in a
hydro turbine may be mechanical, hydraulic or
electrical [2]. These forces may be mechanical
excitations, centrifugal forces due to imbalance of the
rotating mass i.e., runner, shaft, and generator rotor,
elastic force of the shaft due to incorrect shaft
alignment, frictional forces, oil-film instability in
bearing, hydraulic excitations, flow through
waterways; non-uniform velocity distributions in
various waterways of the turbine cause hydraulic
unbalance and pressure fluctuations in the penstock
and electrical excitations etc [3]. Under such
condition, their behavior can be studied and predicted
to some extent by appropriate analysis of their
dynamic response through proper mathematical
modeling of physical system.

Hydro powers are most prominent sources of
renewable energy for electricity generation in various
water resources rich countries and must remain major
source of energy for the sustainable development of
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country as it is renewable and clean source. For
sustainable supply of the electricity from hydropower,
efficiency of the overall system must be maximized;
the reliability and life of the each component should
be increased. Thus, study of dynamic response of the
Pelton turbine unit, one of the widely used water
turbines worldwide, may contribute for the
improvement in the performance as well as reliability,
stability and the life span of the components of the
hydraulic power system.

The research work is mainly targeted to do the
following:

• To develop the governing equation for the shaft
of an overhang Pelton turbine unit for forced
vibration by applying Lagrange’s Equation.

• To determine the vibration amplitudes for
operating conditions of the unit by analytical
methods and software model then compare the
results obtained under forced vibration
condition.

Assumptions

• The model is assumed to be linear and discrete
system for most of the models.
• Pelton turbine unit is the combination of

shaft-runner-buckets-flexible bearings system
but flexible shaft-rigid disk-rigid bearing are
considered for model development to reduce
the level of complexities.

2. Methods and materials

2.1 Literature Review

The past research works which are published on the
international and national journals and the past theses
on the related field will be collected and studied
thoroughly from internet and libraries.

2.2 Mathematical Model Development and
solution

Governing equation for the dynamic behavior of the
Pelton turbine unit will be developed by using
Lagrange’s Equation. The simple approach to rotor
dynamics study is rotor/bearing system that is
generally known as the Fö ppl/Jeffcot rotor, or simply

Jeffcot rotor, which is often used to evaluate the
complex rotor-dynamic systems in the real world. The
model will be developed considering the shaft – disk
(runner)/buckets - bearing system as Föppl/Jeffcot
rotor, i.e. single rigid disk mounted on axial center of
a circular flexible shaft, which is supported by rigid
bearings at each ends. Buckets are uniformly
distributed to the periphery of runner/wheel of the
Pelton turbine, and the impact, velocity, acceleration
distribution profile and time interval between the jets
striking the buckets is almost constant. Thus, runner -
buckets combination is treated as rigid disk.

2.2.1 Rotational matrix

Any rotation can be described by three successive
rotations about linearly independent axes and these
rotations are Euler angles. The positions, angular
velocities and angular accelerations of a body that
rotates about a fixed point, such as a gyroscope, and
body that rotates about its center of mass (an aircraft,
shaft of turbine etc.) can be described by Euler’s
angles [4].

X, Y and Z is fixed inertial frame and x, y and z is
the body fixed axis. Firstly, the rotation is counter
clockwise from an initial XYZ system about the Z, z1
axis as shown in Figure 2.1(a) into x1, y1, z1 system by
an angle φ .

Figure 1: rotational matrix for 312 euler angles

∴

x
y
z

 =cosφ cosψ− sinφ sinθ sinψ sinφ cosψ

−sinφ cosθ cosφ cosθ

cosφ sinψ + sinφ sinθ cosψ sinφ sinψ− cosφ sinθ cosφ
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−cosθ sinφ

sinθ

cosφ

X
Y
Z

 (1)

For the system considered, the spinning axis is Y and
angular motion about X and Z axes are comparatively
small (A time-domain).
Thus,cosθ ≈ 1,cosφ ≈ 1,sinθ ≈ θ sinφ ≈ φ , and
then,
angular velocity of XYZ Frame [5]

ωx

ωy

ωz

=

−φ̇ sinψ + θ̇ cosψ

φ̇θ + ψ̇

φ̇ cosψ + θ̇ sinψ

 (2)

2.3 Method of analytical solution

Finite-element methods (FEM) are based on some
mathematical physics techniques and the most
fundamental of them is the so-called Rayleigh-Ritz
method which is used for the solution of boundary
value problems. In the Rayleigh-Ritz (RR) method we
solve a boundary-value problem by approximating the
solution with a linear approximation of basic
functions [6]. The method is based on a part of
mathematics called calculus of variations. In this
method we try to minimize a special class of functions
called functional.

2.4 Shape function

[5] The shape function is the function which
interpolates the solution between the discrete values
obtained at the mesh nodes. Therefore, appropriate
functions have to be used and, as already mentioned,
low order polynomials are typically chosen as shape
functions. In this work trigonometric shape functions
are used. f (y)=
{coshβy− cosβy}− coshβ l+cosβ l

sinhβ l+sinβ l (sinhβy− sinβy)
Where,
β l= 1.875

2.4.1 Mathematical modelling of the jet force

Fj = ρw×A j×V1 (Vw1 +Vw2)
ρw is the density f water= 1000 Kg/m3

A j is the area of the water jet
V1 is the velocity of the water jet
Vw1 is the component of the velocity of the jet in the
direction of motion
Vw2 is the component of the velocity of the jet in the

direction of vane And,
then,
Vw1 =V1
Vw2 = K (V1−u1)cosφ1−u1

‘k’ is the blade friction coefficient
‘φ1’is the vane angle at oulet which is 15 degree in or
case
‘u1’ is the circumferential velocity of the runner
f (t) = 478.4+∑

∞
n=0
[23920

nω
× sin0.04nω.cosnωt

−23920
nω
{(cos0.04nω−1)× sinωt}

]
Considering the

first five terms of the fourier series the forcing
function is given as [7] :
f (t) = 478.4+ 23920

ω
× sin0.04ω × cosωt + 11960

ω
×

sin0.08ω× cos2ωt
+7973.33

ω
× sin0.12ω × cos3ωt + 5980

ω
sin0.16ω ×

cos4ωt + 4784
ω

sin0.12ω× cos5ωt
−23920

ω
(cos0.04ω−1)sin4ωt− 11960

ω

(cos0.08ω−1)sin2ωt
−7973.33

ω
(cos0.12ω−1)sin3ωt −

5980
ω

(cos0.16ω−1)sin4ωt − 4784
ω

(cos0.2ω−1) ×
sin5ωt

Figure 2: Graphical Representation of the Jettforce

2.5 Kinetic energy of the disk

[8] Thus, the kinetic energy of the disk is given by,
TD = 1

2 MD
(
u̇2 + ẇ2

)
+ 1

2

[
IDxxω2

x + IDyyω2
y + IDzzω

2
z
]

Where,
TD – the kinetic energy of disk.
MD –the mass of the disk.
IDxx, IDyy, and IDzz are the moment of inertia about the
principal axes X, Y and Z respectively.
As the disk is assumed to be symmetrical, IDxx = IDyy.

2.6 Shaft

2.6.1 Kinetic Energy of the shaft

The K.E. of the shaft is defined for an element and
integrated over the length of the shaft ‘L’. The K.E. of
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the shaft is given by the expression [8],
Ts =

ρA
2
∫ L

0
(
u̇2 + ẇ2

)
dy+ ρlxx

2
∫ 1

0 ω2
x dy+ ρlyy

2
∫ 1

0

ω
2
y dy+

ρlzz

2

∫ 1

0
ω

2
z dy (3)

Where,
TS – kinetic energy of the shaft,
ρ – the mass per unit volume,
A – the cross-sectional area of shaft and it is assumed
to be constant,
I – the area moment of inertia of the shaft
cross-section about the neutral axis and it is also
supposed to be constant. Total kinetic energy of shaft
and disc
T = 1

2 MD
(
u̇2 + ẇ2

)
+ 1

2 lDxx
(
θ̇ 2 + φ̇ 2

)
+

1
2 IDyy

(
Ω2 +2φ̇θΩ

)
+ ρA

2
∫ 1

0
(
u̇2 + ẇ2

)
dy+

ρl
2

∫ 1

0

(
θ̇

2 + φ̇
2)dy+ρILΩ

2+2ρlΩ
∫ 1

0
θφ̇dy (4)

2.6.2 Potential Energy of the Shaft

Total potential energy of system is
Total potential energy of the system is [9],

U = EI
2
∫ 1

0

[(
∂ 2u
∂y2

)
+
(

∂ 2w
∂y2

)2
]

dy

U =
EI
2

[∫ L

0
h2 (y)U2dy+

∫ L

0
h2 (y)W 2dy

]
(5)

= EI
2 ×5623.26

(
U2 +W 2

)
Where,
k eq =5623.26 EI
The bearings at the support are considered as rigid and
isotropic with negligible damping

2.7 Total kinetic energy of shaft disc
assembly

Therefore, the kinetic energy of the disk-shaft
assembly is,
T = TD +Ts

=
[1

2 (4MD +450.3IDxx +0.101ρA+35.7ρI)
(
U̇2 +Ẇ 2

)
−(450.3IDyy +71.5ρI)ΩU̇Ẇ

T =
1
2

m
(
U̇2 +Ẇ 2)−aΩU̇Ẇ (6)

Meq. = (4MD + 450.3 IDxx + 0.101 ρ A +35.76ρ I)
a = 450.3 IDyy+ 71.52 ρ I

2.8 Lagrangian equation

L = TT −Us (7)

Where, T is the kinetic energy and U is the potential
energy of the system.

The constant terms appearing in the expressions of
K.E. and P.E. are systematically removed as their
contribution to the Lagrange equation is nil.

Using Lagrange’s equation for the system of rigid
bodies in the form [10] ;

d
dt

(
∂L
∂U̇

)
− ∂L

∂U
+

∂U
∂U

= FU̇ (8)

Where,
N is the number of degrees of freedom (l ≤ i≤ N).
qi are the system’s generalized independent
coordinates.
Fqi are the generalized forces.
denotes differentiation with respect to time t.

2.9 Equation of Motion

Using Lagrange equation

MeqÜ−aλẆ + kU = F (9)

This is the equation of motion in X direction

MeqẄ +aλU̇ + kW = 0 (10)

This is the equation of motion in Z direction

2.10 Solution of the equation of motion

Let the displacement of the system in the X-axis is
given by:

U (t) = A0 + A1 sinωt + A2 cosωt + A3 sin2ωt +
A4 cos2ωt +A5 sin3ωt +A6 cos3ωt +A7 sin4

ωt +A8 cos4ωt +A9 sin5ωt +A10cos5ωt (11)

the Coefficient of this expression are listed below:
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The Deflection of the Shaft for the operating speed
(1500rpm) is as shown in figure below:

Figure 3: Deflection on X-Direction

Again the displacement in the Z-axis is given by
W (t) = B0 + B1 sinωt + B2 cosωt + B3 sin2ωt +
B4 cos2ωt +B5 sin3ωt +B6 cos3ωt +B7 sin4ωt+

B8 cos4ωt +B9 sin5ωt +B10cos5ωt (12)

The Coefficient of this expression are listed below:

Substituting the value of U (t) ,W (t) and the forcing
function F in the equation of motion of X-direction
we get :

The Deflection of the Shaft for the operating speed
(1500rpm) in X-Direction is as shown in figure below:

Figure 4: Deflection on Z-Direction

2.11 Software model development

The software model of the pelton turbine model is
generated on the solidworks and it is then imported on
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the ANSYS workbench for the harmonic response
analysis. Currently preliminary simulation of the
model has been completed. The displacement for the
X-axis at the rated rpm is found to be 6.59 µm.
Similarly, the displacement on the Z axis was found to
be 5.85 nm.

The result from the ANSYS simulation of the model
has been tabulated in the following table:

Table 1: Deflection on X-axis

S.No. Frequency (Hz) Amplitude (mm)
1 3.2 6.54E-03
2 6.4 6.54E-03
3 9.6 6.54E-03
4 12.8 6.55E-03
5 16 6.56E-03
6 19.2 6.56E-03
7 22.4 6.58E-03
8 25.6 6.59E-03
9 28.8 6.60E-03
10 32 6.62E-03
11 35.2 6.63E-03
12 38.4 6.65E-03
13 41.6 6.67E-03
14 44.8 6.70E-03
15 48 6.72E-03
16 51.2 6.75E-03
17 54.4 6.78E-03
18 57.6 6.81E-03
19 60.8 6.84E-03
20 64 6.87E-03
21 67.2 6.91E-03
22 70.4 6.95E-03
23 73.6 6.99E-03
24 76.8 7.03E-03
25 80 7.08E-03
26 83.2 7.13E-03

Figure 5: Deflection on X-Axis

Table 2: Deflection on Z-axis

S.No. Frequency (Hz) Amplitude(mm)
1 3.2 5.78E-05
2 6.4 5.78E-05
3 9.6 5.79E-05
4 12.8 5.79E-05
5 16 5.81E-05
6 19.2 5.82E-05
7 22.4 5.83E-05
8 25.6 5.85E-05
9 28.8 5.87E-05
10 32 5.90E-05
11 35.2 5.93E-05
12 38.4 5.96E-05
13 41.6 5.99E-05
14 44.8 6.02E-05
15 48 6.06E-05
16 51.2 6.10E-05
17 54.4 6.15E-05
18 57.6 6.20E-05
19 60.8 6.25E-05
20 64 6.30E-05
21 67.2 6.36E-05
22 70.4 6.42E-05
23 73.6 6.49E-05
24 76.8 6.56E-05
25 80 6.63E-05
26 83.2 6.71E-05

Figure 6: Deflection on Z-Axis

3. Parameters

The values of parameters as per manual of installed
setup is listed and necessary calculations are done.
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Table 3: Pameter Values

Parameters Value
Outpur Power 1000 W
Rated RPM 1500 rpm
Pitch Circle Diameter of Runner 180 mm
Runner Material Bronze
No. of Buckets 16
Thickness of Buckets (Distance) 18 mm
from front face (splitter) of bucket
to back face of bucket)
Gap between consecutive Buckets 12.434 mm
Density of Bucket Materials 8300 kg/m3

(Casted Brass)
Total Mass of Runner-Buckets Assembly 10.654 kg
Diameter of Shaft 40 mm
Material of Shaft Mild Steel
Density of Shaft Material, ρs 7860 kg/ m3

Young’s Modulus of Elasticity 220 GPa
of the Shaft Material, Es
Diameter of Nozzle opening, da 26 mm
Jet area, a j 0.0000504 m2

4. Conclusion

This paper presented the methodologies to study the
dynamic response of Pelton turbine unit as a
shaft-disk system. Hence, the mathematical model for
dynamic response of the Pelton turbine unit was
formulated and the analytical solution of amplitude of
forced vibration was found. The Fourier analysis for
the excitation force showed the minimum number of
Fourier components to be considered to obtain the
solution in its exact form. Thus, the analysis showed
the summation of first five Fourier components began
to represent the actual shape of pressure pulse. Hence,
minimum five Fourier components are to be
considered in analysis for meaningful representation
of a forcing function. The amplitudes of forced
vibration of the selected Pelton turbine unit of 1 kW
with single nozzle rated at 1500 RPM in X in X
(the direction of water jet) direction and Z direction
were found to be 7.29 µ m and 39 nm respectively
analytically. Similarly, the amplitude of vibration of
in X in X (the direction of water jet) direction and Z
direction were found to be 6.59 µ m and 58.5 nm
respectively by ANSYS simulation.This methodology
can be applied to find the dynamic force response in
MHP and other hydropower plants to calculate the
acceptance level of vibration analytically and can
compare the vibration level during the operation
period in long run by measuring the amplitudes using
vibration measuring devices.
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