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Abstract
The study of vibration is concerned with the oscillatory motions of bodies and the forces associated with them.
Rotor dynamics is the branch of engineering that studies the lateral and torsional vibrations of rotating shafts,
with the objective of predicting the rotor vibrations and containing the vibration level under an acceptable limit.
This research presented the modeling of excitation force imparted by water jet in the form of Fourier series and
determined the forced response of Pelton turbine unit analytically. The mathematical model was developed by
calculating the kinetic energy and potential energy of the disk and shaft. Lagrange’s equation, Rayleigh-Ritz
method and virtul work method were used to derive the equation of motion of forced vibration condition. The
developed methodologies were followed to find the analytical solution of dynamic response of selected Pelton
turbine unit of 2 kW with single nozzle rated at 1500 RPM. A rigid disk (runner and buckets assembly) was situated
midway along the length of flexible shaft with rigid and undamped simply supported bearings at both ends of
the shaft. It was found that summation of first five Fourier components began to represent the actual shape
of pressure pulse. Hence, minimum five Fourier components were to be considered in analysis for meaningful
representation of a forcing function. Analytically, the amplitudes of forced vibration of Pelton Turbine unit with
single nozzle in X direction (the direction of water jet) and Z direction were found to be 3.3 µm and 6.6 ×10−5µm
respectively. Hence, this methodology can be applied to find the forced response in micro-hydro power plants and
other hydropower plants to calculate the acceptance level of vibration analytically and can compare the vibration
level during the operation period in long run by measuring the amplitudes using vibration measuring devices.
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1. Introduction

Vibration is the motion of particle or a body or a system
of connected bodies displaced from position of
equilibrium. Most of the engineering machines and
structures experience vibration to some degree hence
their design requires consideration of their oscillatory
behavior. Most vibrations are undesirable in machines
and structures because they produce increased stresses,
energy losses, causes added wear, increase bearing
loads, induce fatigue, create passenger discomfort in
vehicles and absorb energy from the system [1]. All
bodies having mass and elasticity are capable of
vibration. In engineering systems, harmonic excitation
is encountered and commonly produced by unbalance in
rotating machinery. Vibrations can be free and forced
depending upon the application of force. The failure of
major structures such as bridges, buildings, or airplane

wing is a possibility under resonance. Thus, the
calculation of natural frequencies is a major importance
in the study of vibrations [2]. Accurate analysis of
vibration characteristics is crucial in design stage of
hydraulic machinery for their performance
improvements, reliability, life of the components and
safety.

Rotor dynamics is the branch of engineering that studies
the lateral and torsional vibrations of rotating shafts,
with the objective of predicting the rotor vibrations and
containing the vibration level under an acceptable limit
[3]. The dynamic analysis of the Pelton turbine and
assembly was studied to obtain the natural frequency of
the system [4]. The mathematical model was developed
and solved analytically to find the critical frequency and
validated it numerically. The critical frequency of the
system was found to be 192.69 Hz and 192.73 Hz in the
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X and Y direction and 137.86 Hz and 137.98 Hz
numerically. The natural frequency of the turbine when
coincides with actual frequency of the turbine causes
the formation of the resonance which increase in
chances of failure of the turbine by buckling of
deformation of the shaft. From the literature review it
was seen that, very less work has been done in the field
of the dynamic behavior of pelton wheel turbine and
their effects in design and operation [5]. The
Computational Fluid Dynamics (CFD) analysis of
Pelton turbine of Khimti Hydropower in Nepal was
presented [6]. They determined torque generated by the
turbine and pressure distributions in bucket for further
work on fatigue analysis. The pressure distribution was
found maximum at bucket tip and runner Pitch Circle
Diameter (PCD). The torque generated by the middle
bucket was replicated over time to determine total
torque generated by Pelton turbine.

Lots of research have been done related to dynamic
response on the turbine blade but most of these research
are limited to thermal (gas and steam) turbines.
Although few research have been carried on the
dynamics of water turbine, they are focused either on
the dynamic response due to generator and bearing
behavior or the fluid and blade surface interaction.
Pelton turbines are widely used in large hydropower
plants all around the countries. Pelton turbines are also
being used in several micro hydro power plants. In
MHP plants, the turbine is usually designed and
manufactured by local manufacturers within the country.
Most of the research being conducted are limited to
improvement of designs for sediments and erosion.
However, less work has been done in the field of
dynamic response of turbines assembly and their effects
in design and operation. Forced dynamic response of
Pelton turbine has not been studied so far.

Therefore, this research is mainly focused to model the
excitation force imparted by water jet in the form of
Fourier series to obtain the function in its exact form
and to determine the forced response of Pelton turbine
analytically.

2. Methods and Materials

2.1 Mathematical Model Development

The complete mathematical model has been developed
in four different phases. The basic elements considered
for the mathematical model development are disk, shaft
and bearings. The equation of motion for the system has
been developed using energy method.

Figure 1: Schematic diagram of turbine setup

2.1.1 Phase I: Total energy of the system

The rigid disk, flexible shaft and rigid, undamped and
simply supported bearings were considered. Therefore,
kinetic energy of both disk and shaft were computed
but potential energy for only shaft was computed given
by its strain energy as shaft is only the flexible element.
Three reference frames are used in this work.

xd yd zd: Frame fixed on the disk center

xs ys zs: Frame fixed with shaft

X Y Z: Fixed inertial frame

The Disk

The disk is considered rigid and it is characterized
solely by its kinetic energy. The coordinate of the disk
center O is u (y, t), v and w (y, t) with reference to fixed
inertial frame XYZ; the coordinate along Y-axis
remains constant. Then, the position vector of the disk
center O in the XYZ coordinate system can be written
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as;

~R =


u
v
w

 (1)

Figure 2: A disk on a rotating flexible shaft with
reference frames

The xyz coordinate system is related to XYZ coordinate
system through three set of Euler’s angles φ ,θ and ψ .
To achieve the orientation of the disk, the disk is first
rotated by an angle φ about Z axis; then it is rotated
about the new x-axis x1 by an angle θ and lastly by an
angle ψ about the final y axis. The instantaneous angular
velocity vector of the xyz frame is,

ω = φ̇Z + θ̇x1 + ψ̇ (2)

Through the coordinate transformation, the components
of angular velocities in the direction of principal axes
xyz can be expressed as,ωx

ωy

ωz

=

−φ̇ cosθ sinψ + θ̇ cosψ

φ̇ sinθ + ψ̇

φ̇ cosθ cosψ + θ̇ sinψ

 (3)

Where, φ̇ , ψ̇ and θ̇ are rate of spin, rate of precession and
rate of nutation respectively. For the system considered,
the spinning axis is Y axis and angular motion about
X and Z axes are comparatively small. Thus, cosθ ≈
1,cosφ ≈ 1,sinθ ≈ θ and sinφ ≈ φ [7] then the angular
velocities becomesωx

ωy

ωz

=

−φ̇ sinψ + θ̇ cosψ

φ̇θ + ψ̇

φ̇ cosψ + θ̇ sinψ

 (4)

The kinetic energy of the disk is the summation of
translation kinetic energy and rotational kinetic energy
and given by [8]

TD =
1
2

MD
(
u̇2 + ẇ2)+ 1

2
(
IDxxω

2
x + IDyyω

2
y + IDzzω

2
z
)

(5)

Where, MD is the mass of the disk, IDxx, IDyy, and IDzz
are the moment of inertia about the principal axes X, Y
and Z axes respectively. As the disk is assumed to be
symmetrical, IDxx = IDzz

∴ TD =
1
2

MD
(
u̇2 + ẇ2)+ 1

2
IDxx

(
θ̇

2 + φ̇
2)

+
1
2

IDyy
(
λ

2 +2φ̇θλ
) (6)

The Shaft

The shaft is considered as a flexible element with
constant circular cross-section. Hence, it has both
kinetic energy and potential energy, given by the strain
energy of the shaft. The K.E. of the shaft is given by [9]

Ts =
ρA
2

∫ L

0

(
u̇2 + ẇ2)dy+

ρIsxx

2

∫ L

0
ω

2
x dy+

ρIsyy

2∫ L

0
ω

2
z dy

(7)

Where, TS is the kinetic energy of the shaft, ρ is mass
per unit volume, A is the cross-sectional area of shaft, I
is the second moment of inertia of the shaft cross-section
about the neutral axis and it is equal to πD4

64 [3], D is the
diameter of shaft.

∴ Ts =
ρA
2

∫ L

0

(
u̇2 + ẇ2)dy+

ρI
2

∫ L

0

(
θ̇

2 + φ̇
2)dy

+ρILλ
2 +2ρIλ

∫ L

0
φ̇θdy

(8)

And the strain energy of the shaft is given by [9]

Us =
EI
2

∫ L

0

[(
∂ 2u
∂y2

)2

+

(
∂ 2w
∂y2

)2
]

dy (9)

Where, E is the Young’s Modulus of Elasticity.

Hence, the total kinetic energy of the system is expressed
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as

T =
1
2

MD
(
u̇2 + ẇ2)+ 1

2
IDxx

(
θ̇

2 + φ̇
2)

+
1
2

IDyy
(
λ

2 +2φ̇θλ
)
+

ρA
2

∫ L

0

(
u̇2 + ẇ2)dy

+
ρI
2

∫ L

0

(
θ̇

2 + φ̇
2)dy+ρILλ

2 +2ρIλ

∫ L

0
θφ̇dy

(10)

And, the total potential energy of the system is expressed
as

Us =
EI
2

∫ L

0

[(
∂ 2u
∂y2

)2

+

(
∂ 2w
∂y2

)]
dy (11)

2.1.2 Phase II: Mathematical Model for Equation of
Motion

Lagrange’s Equation

The Lagrange’s Equation is expressed as [1]

d
dt

(
∂T
∂ q̇i

)
− ∂T

∂qi
+

∂Us

∂qi
= Fqi (12)

Where, N is the number of degrees of freedom
(1 ≤ i ≤ N), qi are the system’s generalized
independent coordinates, Fqi are the generalized forces,
T is the kinetic energy and Us is the potential energy of
the system.

Rayleigh-Ritz Method of Analytical Solution

Rayleigh-Ritz method is also known as assumed modes
method. For proper description of the lateral vibration
behavior of the rotor, it is necessary to write the
displacement u and w of the rotor in terms of shape
function f(y), before applying the expressions obtained
in the Lagrange’s equation. The first mode of vibration
for the shape function is assumed as [7]

f (y) = sin
(

πy
L

)
(13)

The expressions for the displacements in x and z
directions are expressed as,

u(y, t) = f (y)U (t) =U sin
(

πy
L

)
(14)

w(y, t) = f (y)W (t) =W sin
(

πy
L

)
(15)

Where, U and W are generalized independent
coordinates. As the angular displacements φ and θ are
small, they are approximated as,

θ =
∂w
∂y

=
d f (y)

dy
W = g(y)W =

π

L
W cos

(
πy
L

)
(16)

φ =−∂u
∂y

=−d f (y)
dy

U =−g(y)U =−π

L
U cos

(
πy
L

)
(17)

With the disk situated at the midway along the length of
shaft and applying the displacement function, the total
kinetic energy of the system is expressed as

T =
1
2

m
(
U̇2 +W 2

2
)
−aλU̇W +ρILλ

2 (18)

Where,

m = MD +
ρAL

2
+

ρIπ2

2L
(19)

a =
ρIπ2

L
(20)

Similarly, the total potential energy of the system is
expressed as

Us =
1
2

K
(
U2 +W 2) (21)

Where,

K =
π4EI
2L3 (22)

External forces

The virtual work done by the transverse forces is given
by

δW = F1(t)δu+F2(t)δw (23)

Using the general coordinates

dW = F1(t)δU sin
(

πy
L

)
+F2(t)δW sin

(
πy
L

)
(24)

Now, eliminating the virtual displacement we get the
general forces as

FU = F1(t)sin
(

πy
L

)
FW = F2(t)sin

(
πy
L

) (25)
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In Pelton turbine,the water jet strikes the bucket
tangentially only in the X direction, so, F1(t) = Fext.(t)
and F2(t) = 0 and as the buckets are at the middle along
the length of shaft i.e., y = L

2

FU = Fext.(t)

FW = 0
(26)

Using Lagrange’s equation in the above obtained kinetic
and potential energy choosing generalized co-ordinates
as U and W, we get equation of motion as

mÜ −aλẆ +KU = FU

mẄ +aλU̇ +KW = FW
(27)

Then, the equation of motion for force response in matrix
form is expressed as,[

m 0
o m

][
Ü
Ẅ

]
+λ

[
0 −a
a 0

][
U̇
Ẇ

]
+

[
K 0
0 K

][
U
W

]
=

[
Fext. (t)

0

]
(28)

2.1.3 Phase III: Force imparted by water jet in the
buckets and Fourier representation

Force exerted by water jet on the buckets

In Pelton turbine, the jet strikes the bucket in the
tangential direction and the magnitude of force can be
calculated as [10]

Fj = ρwa jV1 (Vw1 +Vw2) (29)

Where, Fj is the force exerted by the jet of water in the
direction of motion, ρw is the mass density of water, a j is
the area of jet, Vw1 is the component of velocity of the jet
V1 in the direction of motion, and Vw2 is the component
of velocity V2 in the direction of vane.

Vw1 =V1

Vw2 = k (V1 −u1)cosφ1 −u1

u1 =
πDwN

60
V1 =Cv

√
2gHN

(30)

Where, k is the blade friction coefficient, φ1 vane angle at
outlet, u1 is peripheral/circumferential velocity of runner,
Dw is the diameter of Pelton wheel, N is speed of wheel
in RPM (1500 RPM for synchronous motor), Cv is the
coefficient of velocity (generally 0.98 or 0.99) and HN

is the net head on turbine.

Fourier representation of the force

In mechanical systems, most often the excitation forces
are not harmonic functions but periodic in nature [11].
The response of the system to periodic excitation is
determined by first determining the Fourier components
of the excitation force and then determining the
response of the system to each of these harmonic
components. If F(t) is a periodic function with period τ ,
its Fourier series representation is given by [11]

F (t) =
a0

2
+

∞

∑
n=1

(an cosnωt +bn sinnωt) (31)

Where, an and bn are Fourier coefficients and can be
determined by using the following relations

an =
2
τ

∫
τ

0
F(t)cosnωtdt

bn =
2
τ

∫
τ

0
F(t)sinnωtdt

(32)

The Fourier series representation of excitation force is
expressed as

F (t) = 0.592F1 +
∞

∑
n=1

(
0.3183Fj

n
sin3.7196ncosnωt

)
+

∞

∑
n=1

(
0.3183Fj

n
(1− cos3.1796n)sinnωt

)
(33)

2.1.4 Phase IV: Mathematical model for analytical
solution of the force response of the system

For this phase undamped, rigid and isotropic bearings
will be considered. Writing the differential equation of
motions for forced vibration as

mÜ −aλẆ +KU = 0.592F1

+
∞

∑
n=1

(
0.3183Fj

n
sin3.7196ncosnωt

)
+

∞

∑
n=1

(
0.3183Fj

n
(1− cos3.1796n)sinnωt

) (34)

mẄ +aλÜ +KW = 0 (35)

These are two coupled linear differential equations of
second order and their solution will be in the form;

U (t) = A0 +A1 sinωt +A2 cosωt +A3 sin2ωt

+A4 cos2ωt +A5 sin3ωt +A6 cos2ωt +A7 sin4ωt

+A8 cos4ωt +A9 sin5ω +A10 cos5ωt
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(36)
W (t) = B0 +B1 sinωt +B2 cosωt +B3 sin2ωt

+B4 cos2ωt +B5 sin3ωt +B6 cos2ωt +B7 sin4ωt

+B8 cos4ωt +B9 sin5ωt +B10 cos5ωt
(37)

Where, A0,A1, ....A10 and B0,B1, ....B10 are constants.

2.2 Solution of Developed Mathematical Model

Using the Equations 34, 35, 36 and 37, the constant
A0,A1, ....A10 and B0,B1, ....B10 can be calculated. Then
the Equations 36 and 37 can be plotted with respect
to time and amplitude of forced vibration in X and Z
direction can be found from the graph.This gives the
amplitude values in X and Z direction at the midway of
shaft span and amplitude value at any position within the
shaft span in X and Z directions can be found by using
the Equations 14 and 15 respectively.

3. Results and Discussion

The developed methodologies were followed to find the
analytical solution of dynamic response of selected
Pelton turbine unit of 2 kW with single nozzle rated at
1500 RPM. The values of parameters as per manual of
installed setup is listed and necessary calculations are
done.

Table 1: Parameters used for finding the amplitude of
force vibration

SN Parameters Value
1 Rated RPM, N 1500
2 PCD of Runner (mm) 155
3 Number of buckers, n 16
4 Thickness of bucket (mm) 18
5 Gap between consecutive buckets (mm) 12
6 Mass of runner, MD (kg) 10.654
7 Diameter of Shaft, D (mm) 32
8 Length of shaft, L (mm) 519
9 Density of shaft material, ρs 7860

10 Modulus of Elasticity, Es (GPa) 202
11 Spin speed, λ (rad/s) 157.07

3.1 Calculation of Force exerted by the water
jet on the buckets

For determining the force imparted by water jet, some of
the parameters are needed to calculate which are listed
in Table 2.

Table 2: Parameters used for finding jet force
calculation

SN Parameters Value
1 ρw (kg/m3) 1000
2 u1 (m/s) 12.174
3 Vw1 (m/s) 27.454
4 Vw2 (m/s) 1.847
5 a j (m2) 0.0024

The value of jet force is calculated using the Equation
29 and is found to be 193 N.

3.2 Calculation of Fourier components and
their resultant

The fourier components are found as a0 = 228.5120
an =

61.4338
n sin3.7196n

bn =
61.4338

n (1− cos3.1796n)
The representation of excitation force in the form of
Fourier series is
F (t) = 114.256 +

∞

∑
n=1

(61.4338
n sin3.7196ncosnωt

)
+

∞

∑
n=1

(61.4338
n (1− cos3.1796n)sinnωt

)
For analysis of excitation force to obtain the function
in its exact form, different graphs for excitation force
versus time were plotted.

Figure 3: First two Fourier components and their
resultants
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Figure 4: First five Fourier components and their
resultants

Figure 5: First ten Fourier components and their
resultants

Figure 6: First twenty Fourier components and their
resultants

Figure 7: Fourier components for n = 1, 5, 10 and 20

Figure 8: Resultant of Fourier components for n = 5, 10
and 20

Figures 3, 4, 5 and 6 show that the first Fourier
component has the maximum amplitude, while higher
order components generally decrease but the ripple
frequency of higher order components increases and
resultant of higher order represents more precisely the
actual shape of pressure pulse. Hence, this indicates
very lucidly how the higher order Fourier components
contribute to the development of exact function. It is
obvious that infinite number of Fourier components will
have to be considered if the function in its exact form is
to be obtained. The comparison of level of accuracy
obtained by summation of first five, ten and twenty
Fourier components is shown in Figure 8. It is clear that
the first five Fourier components are enough to represent
the function to obtain the solution of forced response.

3.3 Calculation of constant terms

The values of m, a and K are found using Equations 19,
20, and 22.

515



Dynamic Response of Pelton Turbine Unit for Forced Vibration

A = 8.042×10−4m2

I = 5.15×10−8m4

m = 12.298kg
a = 7.694×1063kg
K = 3622335N/m
After calculation of constant A0,A1, ....A10 and
B0,B1, ....B10, Equations 36 and 37 are represented as
U (t) =−3.1543×10−6 −1.5243×10−6 sinωt
+4.5325×10−7 cosωt −5.9723×10−8 sin2ωt
−9.1544×10−8 cos2ωt −2.4655×10−8 sin3ωt
+2.9051×10−8 cos3ωt −2.0763×10−9 sin4ωt
−9.1401×10−10 cos4ωt −1.9914×10−10 sin5ωt

W (t) =−1.8589×10−11 sinωt −6.2518×10−11

cosωt +1.8109×10−12 sin2ωt −1.1814×10−12

cos2ωt −3.8062×10−13 sin3ωt −3.2302×10−13

cos3ωt +8.9609×10−13 sin4ωt −2.0356×10−13

cos4ωt −1.2351×10−14 sin5ωt −1.5602×10−15

cos5ωt

Now, plotting U(t) and W(t) with respect to time to
determine the amplitudes of forced vibration as,

Figure 9: Vibration amplitude in X-direction at the
middle of shaft span

Figure 10: Vibration amplitude in Z-direction at the
middle of shaft span

From the Figures 9 and 10, the amplitudes of vibration of
selected Pelton turbine unit with single nozzle are found
to be 3.3 µm and 6.6 ×10−5µm in X and Z directions
respectively at the midway along the length of the shaft.

4. Conclusion

This paper presented the methodologies to study the
dynamic response of Pelton turbine unit as a shaft-disk
system. Hence, the mathematical model for dynamic
response of the Pelton turbine unit was formulated and
the analytical solution of amplitude of forced vibration
was found. The Fourier analysis for the excitation force
showed the minimum number of Fourier components to
be considered to obtain the solution in its exact form.

Thus, the analysis showed the summation of first five
Fourier components began to represent the actual shape
of pressure pulse. Hence, minimum five Fourier
components are to be considered in analysis for
meaningful representation of a forcing function. The
amplitudes of forced vibration of the selected Pelton
turbine unit of 2 kW with single nozzle rated at 1500
RPM in X (the direction of water jet) direction and Z
direction were found to be 3.3 µm and 6.6 ×10−5µm
respectively analytically.

This methodology can be applied to find the dynamic
force response in MHP and other hydropower plants to
calculate the acceptance level of vibration analytically
and can compare the vibration level during the operation
period in long run by measuring the amplitudes using
vibration measuring devices.
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