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Abstract

This paper presents a cost effective method to design a three channel active electrode EEG
(Electroencephalogram) device for recording brainwaves. The designed EEG device is tested for the classification
of brainwaves related to motor imagery (MI) left and right hand movement. The designed EEG device could
be used for various Brain Computer Interface (BCl) applications. The goal of this paper is to use Independent
Component Analysis (ICA) for the removal of EEG artifacts, and then extract the brainwaves features for Ml left
hand and MI right hand movement using Wavelet Decomposition (WD). The ‘Morlet’ mother wavelet is used for
wavelet decomposition as it shows better performance for analysis of non-stationary biomedical signals like EEG.
The brainwave features like Maximum Power among all decomposition level (MMP), Frequency corresponding
to MMP (MAF), and Average power of the signal with MAF (MAP) is chosen as the classification features for
the classification of Ml brainwaves. The classification of M| brainwave signals is done using Linear Discriminant
Analysis (LDA) which showed the training accuracy of 88.6% for training data set and testing accuracy of 80% for
testing data set. Thus, the designed three channel active electrode EEG device used showed good performance
for recording EEG signals. Furthermore, signal preprocessing algorithm ICA, feature extraction method Wavelet
Decomposition, and classification method LDA showed good performance for the classification of Ml left hand and

MI right hand activities.
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1. Introduction

Brain is composed of billions of brain cells called
neurons, which are interconnected to each other through
synapses to form a neural network (10'! neurons and
10* connections in human brain). When brain cells
(neurons) are activated, the electrical activity occurs in
brain. The electrical activity in brain is due to Na+, K+,
Ca+, and Cl- ions that are pumped through channels in
neuron membrane in the direction governed by
membrane potential[1, p. 347]. Brainwaves are
produced by electrical activities from masses of neurons
communicating with each other. The brain waves can be
detected using sensitive medical equipment (such as
EEG), which measures the electrical activity generated
by brain structure over areas of the scalp.

Our brainwaves change according to what we are doing
and feeling. For instance, the brain waves of a sleeping
person are vastly different than the brainwaves of
someone wide awake. When slower brainwaves are
dominant we can feel tired, slow, sluggish, or dreamy.
The higher frequencies are dominant when we feel
wired. or hyper-alert. Brainwave speed is measured in
Hertz (cycles per second ) and they are divided into
bands delineating slow, moderate and fast waves[2].
The Delta Waves are the slowest brainwaves with
frequency ranging from 0.5 Hz to 4 Hz, the Theta
Waves ranging from 4 Hz to 8 Hz are associated with
sleep and also dominant in deep meditation. Alpha
Waves (8 Hz - 13 Hz) are dominant during quietly
flowing thoughts, Beta Waves (13 Hz - 38 Hz) are
dominant in our normal waking state when out attention
is towards cognitive tasks. Similarly, the Gamma Waves
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(38 Hz- 90 Hz) are the fastest brainwaves and are highly
active when in states of universal love, altruism, and
‘higher virtues’. The different types of brainwaves that
can be recorded using EEG devices are shown in Figure
1.

A brain computer interface (BCI) system provides a
communication channel between a user’s brain and a
device the user intends to control. A successful BCI
system enables a person to control some aspects of his
or her environment (such as lights in the room, a
television, a neural prosthesis or a computer) by
analyzing his or her brainwave signals. Specific features
of the user’s brain activity or neurological phenomenon
that relate to their intent to control a device are
measured[2]. These features are then translated to

control commands that are used to control the device.

The EEG is often contaminated with other electrical
activity, which may be observed in the signal but is not
related to brain activity. Such additional signals are
referred to as artifacts. Artifacts are attributed either to
non-physiological sources (such as 50/60 Hz power-line
noise, changes in electrode impedances, etc.) or
physiological sources, such as potentials introduced by
eye or body movements[4]. Non-physiological artifacts
and are usually avoided by proper filtering, shielding,
etc. Physiological artifacts such as EOG and EMG
artifacts are much more challenging to handle than
non-physiological ones. Moreover, controlling them
during signal acquisition is not easy. There are different
ways of handling these types of artifacts in BCI
systems.

2. Related Work

In past few decades, many authors and researchers have
contributed in brainwaves, their significance and their
applications. Some of the honorable works in the field
of brainwaves related to this research work are
mentioned here.

Schlogl et al. in [5], Kumar et al. in [6], and Daly et al.
in [7] explains various methods (online as well as
offline) to remove artifacts from the recorded raw
brainwave signals. Kumar ef al. in [6] proposed a fully
automated and online artifact removal method for the
electroencephalogram (EEG) for use in brain-computer
interfacing (BCI). The method (FORCe) was based
upon a novel combination of wavelet decomposition,

independent component analysis, and thresholding.
FORCe was able to operate on a small channel set
during online EEG acquisition and did not required
additional signals (e.g., electrooculogram signals). The
method was able to remove a wide range of artifact
types including blink, electromyogram (EMG), and
electrooculogram (EOG) artifacts. Similarly, Gandhi et
al. in [8] had explained a Quantum Neural Network
based EEG filtering techniques for the removal of
artifacts from EEG signals. According to authors, it is a
novel neural information processing architecture
inspired by quantum mechanics and incorporating the
well known Schrodinger wave equation. The
architecture proposed by the authors referred to as
recurrent quantum neural network (RQNN) could
characterize a nonstationary stochastic signal as
time-varying wave packets. The RQNN filtering
procedure was applied in a two-class motor
imagery-based brain—computer interface where the
objective was to filter electroencephalogram (EEG)
signals before feature extraction and classification to
increase signal separability.

Campisi et al. in [9], Cecotti et al. in [10], and Iwasa et
al. in [11] had explained the various methods to use
brainwave signals for biometric user authentication.
According to these papers, EEG-based authentication
systems mainly composed of four primary modules:
data acquisition, pre-processing, feature extraction and
finally classification. Usually EEG biometric
authentication systems are evaluated in two modes;
identification and verification. The accuracy of the
system is usually evaluated in identification mode using
average correct recognition rate (CRR) or genuine
acceptance rate (GAR). The performance of EEG
biometric authentication systems depends on four
important factors: namely, the acquisition protocol of
EEG (the protocol followed in recording EEG signals),
preprocessing technique, features extracted from EEG
signals and the classification scheme.

Xu et al. in [12], Chai et al. in [13], and Steyrl et al. in
[14] had explained various feature extraction methods
like DWT, FFT, HHT and classification algorithms like
LDA, SVM, GA-ANN, Random Forest etc. for the
classification of motor imagery brainwave signals. Xu
et al. in [12] presented a method for classifying the
off-line experimental electroencephalogram (EEG)
signals from the BCI Competition 2003 and achieved
higher accuracy. The method had three main steps.
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Figure 1: Different types of brainwaves[3]

First, wavelet coefficient was reconstructed by using
wavelet transform in order to extract feature of EEG for
mental tasks. At the same time, in frequency extraction,
they used the AR model power spectral density as the
frequency feature. Second, they combine the power
spectral density feature and the wavelet coefficient
feature as the final feature vector. Finally, linear
algorithm was introduced to classify the feature vector
based on iteration to obtain weight of the vector’s
components. The classified result showed that the effect

using feature vector is better than just using one feature.

Similarly, Chai et al. in [13] presents the classification
of a three-class mental task-based brain computer
interface (BCI) that used the Hilbert-Huang transform
(HHT) for the features extractor and fuzzy particle
swarm optimization with cross mutated-based artificial
neural network (FPSOCM-ANN) for the classifier. The
experiments were conducted on five able-bodied
subjects and five patients with tetraplegia using
electroencephalography (EEG) signals from six
channels, and different time-windows of data.

In this paper, a method to design a tri-channel active
electrode EEG device has been presented. The designed
EEG device could be used to record EEG signals of

different subjects under different experimental setups.

This paper deals with the classification of brainwaves
related to imagined left-hand and right-hand movement
by a subject.

3. Methodology

3.1 Block Diagram of Self Made EEG Device

The general block diagram for the system
implementation in shown in Figure 2. Active electrodes,
amplifiers and signal recording tools combined forms
the EEG data Acquisition system.

3.1.1 Test Subject

Any person whose brainwaves are to be recorded and
detected by using the active electrodes of EEG device
are called test subject.

3.1.2 Active Electrodes

Active Electrodes are the electronic circuit with filters
and amplifier that are placed in the frontal regions of
test subject’s head for the detection of the brainwaves.
These are the sensors used for the conversion of brain
signals into electronic signals. The active electrodes are
constructed using operational amplifier which consists
of the circuit that implements a low-pass filter of cutoff
frequency around 100Hz and a unity gain amplifier.

3.1.3 Amplifiers

After the detection of the brain wave signals by the
active electrodes, the signal is amplified by using
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Figure 2: System Block Diagram

amplifiers. The brain wave signals are very low voltage
signals with magnitude ranging form 50 to 500
microvolts, so for further processing of the signals these
low voltage signals are amplified by using amplifiers.
For the propose of amplification, an Instrumental
Amplifier is used as they have better CMRR (Common
Mode Rejection Ratio). The gain of the instrumentation
amplifier can be set by using a single resistor.

3.1.4 Signal Recording Tools

After amplification of a low voltage brain waves signals,
they are send to the signal recording tools to record
for the further processing. The signal recording tools
consists of an Arduino Hardware and Matlab Software
communicating via USB connection. The eeg signal
from the amplifier are measured using analog input pin
of the Arduino with the help of MATLAB. Thus, the
eeg signals are recorded and displayed in MATLAB
with the help of Arduino. For interfacing and enable
communication of Arduino with Matlab, we need to
install Hardware Support Package for Arduino in Matlab.
A portion of an application designed in MATLAB is
used as user interface to record and store the brainwave
signals from three channels of the eeg recording device.

3.1.5 Signal Processing and Analysis Tools

The recorded brain wave signal contains all types of
brain wave signals with frequency ranging from 1Hz to

100Hz along with the line frequency and other artifacts.

A notch filter of 50Hz is used to remove the line
frequency artifacts from the recorded eeg signal. Since,
the brain wave signals are recorded using MATLAB, the
recorded signals are pre-processed for classification in
MATLAB. The pre-processing is done by using Fast
ICA algorithm, which removes the ocular artifacts from
the brainwaves. Further, each independent component is
subjected to a mean-filtering before using the
components for feature extraction.  The feature

extraction is done by using wavelet transform with
‘morlet’ as mother wavelet. After feature extraction, the
brainwave signals are classified using linear
discriminant analysis. For all these steps, a MATLAB
application has been designed which provides better
user interface for the signal processing and analysis.

3.1.6 Signal Display Unit

The resulting brainwave signals and the intermediate
signals obtained during the course of signal processing
and analyzing will be displayed on the Monitor.

3.2 Data Recording

The brainwaves signals are recorded using MATLAB.
The analog brainwaves signals are converted to digital
using Arduino and the digital signal are send to MATLB
for recording. The brainwave signals of the test subject
will be recorded according to following experimental
paradigm.

e Three bipolar recordings (C3, Cz, and C4) will
be recorded with a sampling frequency of 150 Hz.
The electrode position Fz served as EEG ground.

e Each subject was participated in ten sessions on
two different days within a week. Each session
was about 30 seconds long in which the subject
was asked to close his/her eyes and imagine
movement of his/her left hand or right hand. In
each session 250 samples of brainwave voltage
was recorded for a MI action. Therefore, a total
of 10 MI data (5 for MI left hand and 5 for MI
right hand) was obtained from each subject.

The raw EEG signals of a Subject recorded using
designed three channel active electrode EEG device is
shown in Figure 3.
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Figure 3: Raw EEG signals recorded from three
channel EEG device

3.3 Data Calibration

The raw EEG data recorded from self made EEG device
is calibrated by comparing the raw data recorded from
MindWave headset of NeuroSky. The MindWave
headset of NeuroSky is a bluetooth powered device
which can record EEG data from its sensor attached to
the forehead of the Subject. The data from the
MindWave headset are stored in the internal device
buffer of size 512 Bytes which can be read from the
bluetooth interface. This headset records EEG data in
continuous asynchronous mode by overwriting the
previous data after the buffer becomes full. The data
from Mind Wave headset is 8 bit data in the range of 0
to 255, which can be converted into voltage of range 0
to 5 Volts by using simple formula as shown in
Equation 1.
Dp

= —x%x5V

D
V'~ 255

(1
where Dy is data obtained in Volts and Dg is data
recorded in bits.

For the calibration of data recorded from self made
EEG device, 200 samples of data each are recorded
from both the devices from same Subject under same
conditions. The data calibration is done by using Simple
Moving Average Filter (SMAF). The data recorded
from the self made EEG device is filtered using SMAF
and the filtered data and the data from the MindWave
headset were compared in terms of variance:

Variance of data recorded from MindWave headset of
NeuroSky=2.92

Variance of Uncalibrated data from self made EEG

device=6.20
Variance of Calibrated data from self made EEG
device=2.27

It showed that calibrated data from self made EEG
device was more similar to the data recorded by
MindWave headset . Thus, the calibrated data was
obtained for the further processing of the signal.

3.4 Preprocessing

For the removal of artifacts, the recorded data is
preprocessed. The preprocessing has been done by
using a notch filter (50Hz) to remove power-line noise
followed by ICA. The raw EEG signal shown in Figure
3 was filtered using 50 Hz notch filter. The filtered
signal is shown in Figure 4, which is free from
power-line noise.
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Figure 4: EEG signals after removing 50Hz power line
artifacts using Notch Filter

The ICA removes the EOG and EMG artifacts from the
recorded brainwave signals. Independent component
analysis (ICA) attempts to separate multivariate signals
into subcomponents which are maximally statistically
independent from one another. The EEG is assumed to
arise from the summed electrical activity generated
from multiple independent sources. ICA attempts to
estimate the mixing process which gave rise to the EEG
from these sources and then, by inverting the mixing
matrix, to attempt to reconstruct the sources[7].

The ICA process can be mathematically defined by
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Equation 2.

x=Ws 2)

where x denotes the EEG signals recorded from the
scalp, s the original dipole sources from which the EEG
originates, and W the linear mixing matrix.

Before applying an ICA algorithm on the data, it is
usually very useful to do some preprocessing. Some
preprocessing techniques that make the problem of ICA
estimation simpler and better conditioned are as
follows[15]:

e Centering

The most basic and necessary preprocessing is to
center x, i.e. subtract its mean vector m = E{x}
so as to make x a zero-mean variable. This
implies that s is also zero-mean.

This preprocessing is done to simplify the ICA
algorithms. After estimating the mixing matrix W
with centered data, we can complete the
estimation by adding the mean vector of s back to
the centered estimates of s. The mean vector of s
is given by A~'m, where m is the mean that was
subtracted in the preprocessing.

e Whitening

Another useful preprocessing strategy in ICA is
to first whiten the observed variables. This means
that before the application of the ICA algorithm
(and after centering), we transform the observed
vector x linearly so that we obtain a new vector X
which is white, i.e. its components are
uncorrelated and their variances equal unity. In
other words, the covariance matrix of X equals the
identity matrix as defined in Equation 3.

E{zxl} =1 3)

One popular method for whitening is to use the
eigen-value decomposition (EVD) of the
covariance matrix E{xx’ } = EDET , where E is
the orthogonal matrix of eigen vectors of E {xx}
and D is the diagonal matrix of its eigenvalues,
D = diag(dy,....,d,). E{xx"} can be estimated
in a standard way from the available sample
x(1),...,x(T). Whitening can now be done by
using Equation 4.

f=ED '2ET

)

where, the matrix D~1/2 is computed by a simple

component-wise operation as
D'/ = diag(d, 1/2,...,d,71/2).

After ICA of the three channel EEG signal, three
independent components (IC1, IC2, IC3) are generated
as shown in Figure 5 . Among these there independent
components, only one component with low artifacts is
chosen for the wavelet decomposition. For the selection
of independent component, mean amplitude and
maximum amplitude of each component is calculated.
The component with positive value of mean amplitude
having lowest value of maximum amplitude is chosen
for the further processing. Among three independent
components shown in Figure 5, the chosen independent
component is shown in Figure 6.
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Figure 5: EEG signals after Independent Component
Analysis
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62



Proceedings of IOE Graduate Conference, 2017

4. Data Analysis

4.1 Feature Extraction and Selection

Once the EEG signals are preprocessed, we need to
determine features from the signals by the use of signal
processing techniques. This process is named ‘feature
extraction’. Feature extraction is a special form of
dimensionality reduction. Feature extraction involves
simplifying the amount of resources required to
describe a large set of data accurately. Since not all
features that can be extracted from EEG signals for a
given classification problem need to be used, due to
their redundancy, a further process is needed for
redundancy reduction by retaining only an informative
subset of them[16]. This stage of processing is called
‘feature selection’.

After removing the artifacts from EEG signals, the
features are extracted by using Wavelet Decomposition
(WD). Wavelets attempt to decompose a signal by
convolving it with a mother wavelet function at a range
of different time and frequency locations and measuring
the strength of the signal as a coefficient of the wavelet
function[17].

The wavelet decomposition can be
mathematically by Equations 5 and Equation 6.

defined

o /)= [ xwlodr ®

with

1 t—7
%‘l’( .
where x() is the original signal and xdenotes the
complex conjugation. @(t, f)shows how the signal x(r)
is translated into a set of wavelet basis functions Y ¢(7)
at scale and translation dimensions s and 7 . Y is the
mother wavelet function with which the signal is
convolved.

The ‘Morlet’ mother wavelet is used. In this work, eight
features are extracted from the wavelet decomposed
signals. The extracted features from the signal are
Maximum Amplitude (MA), Minimum Amplitude
(mA), Average Amplitude (AA), Approximate
Frequency (AF), Maximum Power (MP), Minimum
Power (mP), Average Power (AP), and Power Variance
(PV). These features of 27 decomposed signals

Vo (t) = ) ©)

generated from WD of a EEG signal recorded under MI
Left Hand of Subject SO1 is shown in Table 1. Since all
these eight features of all the 27 decomposition levels
cannot be used for the purpose of classification, only the
features of decomposed signal with highest value of
Maximum Power is chosen. In the Table 1 the signal
with decomposition level N=16 has the highest value of
Maximum Power (MP).

For the chosen decomposed signal, these eight features
Maximum Amplitude, Minimum Amplitude, Average
Amplitude, Approximate Frequency, Maximum Power,
Minimum Power, Average Power, and Power Variance
are designated as MAM, MmA, MAA MAF, MMP,
MmP, MAA, and MPV respectively. Table 2 shows the
values of all these features for the chosen decomposed
signals (from 27 decomposed signals) for MI Left Hand
(LH) and MI Right Hand (RH) of five different subjects.

From Table 2 , it is clear that not all features of chosen
decomposed signal can be used for the classification of
MI Left Hand and MI Right Hand Classification.
Among the eight features computed, the three features;
Approximate Frequency (MAF) of chosen decomposed
signal, Maximum Power (MMP) of chosen decomposed
signal, and Average Power (MAP) of chosen
decomposed signal are selected as input for
classification algorithm.

4.2 Classification Method

Classification method has a direct and critical impact on
classification performance. There are many ways for
classification, such as Linear Discriminant, Common
Space Models, Bayesian methods, Neural Networks,
SVMs and so on. In this paper, Linear Discriminant
Analysis (LDA) is used to classify the MI left-right
hand movement classes on the basis of features
extracted and selected from WD. Linear discriminant
analysis (LDA) is a generalization of Fisher’s linear
discriminant, a method used in statistics, pattern
recognition and machine learning to find a linear
combination of features that characterizes or separates
two or more classes of objects or events. Since, the
EEG signals are highly non-stationary, dynamic and
unpredictable signals, so for their classification,
probabilistic methods such as LDA can outperform the
other classifiers for two class classification problems
[18]. In addition to that LDA makes some simplifying
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Table 1: Features of WD signals for 27 decomposition levels (N) for MI Left Hand of Subject SO1

N Scale MA mA AA AF MP mP AP PV
M VM V) Hn (vH vVH V) VY

1 020 1.68 0.02 0.68 40.62 282 0.00045 0.58 0.25

2 023 180 004 0.87 3416 325 0.00184 092 0.54

3 028 191 0.01 0.84 28.72 3.67 0.00024 093 0.77

4 033 200 0.02 084 2415 4.01 0.00079 0.89 0.61
5 040 199 0.06 0.87 2031 397 0.00361 099 1.01

6 047 217 001 0.8 17.08 4.72 0.00035 091 1.15

7 056 169 001 0.75 1436 286 0.00010 0.75 0.48

8 067 184 001 076 1207 3.41 0.00019 0.74 0.50

9 080 1.65 0.14 0.88 10.15 2.75 0.02000 0.92 0.50

10 095 193 0.01 083 854 3.73 0.00001 092 0.86
11 113 227 009 124 7.18 5.15 0.00942 190 246
12 134 196 0.66 1.19 623 3.84 0.44591 155 0.92
13 160 121 019 070 507 147 0.03991 0.56 0.16
14 190 184 022 090 427 341 0.05233 1.02 0.92
15 226 244 045 130 359 597 020508 2.02 290
16 269 254 018 136 3.01 6.46 0.03294 241 4.77
17 320 1.87 058 1.19 253 352 034610 1.64 1.31
18 380 135 023 082 213 1.83 0.05585 0.78 0.33
19 452 124 066 093 1.79 1.54 043705 091 0.12
20 538 126 019 086 150 1.59 0.03755 0.86 0.29
21 640 1.10 080 094 126 1.22 0.65531 091 0.03
22 761 123 023 082 106 153 0.05332 0.79 0.27
23 905 164 156 160 0.89 2.69 246223 258 0.01
24 1076 141 133 137 0.75 2.00 1.77782 1.89 0.01
25 1280 044 0.05 029 0.63 0.19 0.00262 0.10 0.01
26 1522 073 072 0.72 053 0.53 0.52478 0.53 0.00
27 18.10 1.58 1.58 158 044 252 252007 252 0.00

assumptions about our data:

e That our data is Gaussian, that each variable is is
shaped like a bell curve when plotted.

e That each attribute has the same variance, that
values of each variable vary around the mean by
the same amount on average.

With these assumptions, LDA model estimates the

mean(u) and variance(c?) from our data for each class.

It is easy to think about this in the univariate (single
input variable) case with two classes. The mean (u)
value of each input (x) for each class (k) can be

estimated in the normal way by dividing the sum of
values by the total number of values as shown in
Equation 7.

1
Nk:;kzx

where Ll is the mean value of x for the class k, ny is the
number of instances with class k.

The variance is calculated across all classes as the
average squared difference of each value from the mean
as shown in Equation 8.

(N

®)

64



Proceedings of IOE Graduate Conference, 2017

Table 2: Features of chosen WD signal of MI Left Hand and MI Right Hand for five different subjects

Subject MI-Class MMA MmA MAA MAF MMP MmP MAP MPV
\2) \2) V) Hz V) @) (vVH (VY

S01 LH 2.54 0.18 1.36  3.01 646 0.0329 241 477
S02 LH 2.78 2.78 278 044 776 777655 7776  0.00
S03 LH 2.77 0.07 094 17.08 7.69 0.0062 120 2.07
S04 LH 2.61 0.28 1.06 427 681 0.0793 156 3.86
S05 LH 3.21 002 068 24.15 1035 0.0005 0.89 3.19
S01 RH 2.52 0.13 0.89 17.08 638 0.0193 1.05 1.78
S02 RH 2.37 0.03 0.85 12.07 563 0.0009 1.04 1.92
S03 RH 277 0.01 079 3416 7.67 0.0001 0.99 2.14
S04 RH 221 0.03 1.03 2031 492 0.0013 135 1.55
S05 RH 2.75 0.10 1.27 1015 7.59 0.0118 210 3.76

where 62 is the variance across all inputs x, 7 is the
number of instances, k is the number of classes and u is
the mean for input x.

LDA makes predictions by estimating the probability
that a new set of inputs belongs to each class. The class
that gets the highest probability is the output class and a
prediction is made. The model uses Bayes Theorem to
estimate the probabilities. Briefly Bayes Theorem can
be used to estimate the probability of the output class
(k) given the input (x) using the probability of each class
and the probability of the data belonging to each class
as shown in Equation 9.

. . . Pk*fk(x)
PO =X =0 = S )

where, P, defined in Equation 10, refers to the base
probability of each class k observed in our training data
(i.e 0.5 for a 50-50 split in a two class problem). In
Bayes’ Theorem this is called the prior probability.

(©))

b= — (10)
The fi(x) in Equation 9 is the estimated probability of x
belonging to the class k. A Gaussian distribution
function is used for fi(x). Plugging the Gaussian into
the Equation 9 and simplifying we end up with the
Equation 11. This is called a discriminate function and
the class is calculated as having the largest value will be
the output classification (y):

ut
2% o2

Dy (x) :x*%—

+In(P,) (11)

Dy (x) is the discriminate function for class k given input
x, the i, o2 and P, are all estimated from our data.

In this work, three features (MMP, MAP, MAF) and two
classes (MI Left Hand, MI Right Hand) are used. So, the
Equation 11 can be modified to generate discriminant
function for two classes as shown in Equation 12 and
Equation 13.

Discriminant Function for Class MI Left Hand:

Dig=Ci+Lj *MMP+Li«xMAP+ Li3xMAF (12)
where, C; is constant, L;;, Li» and Lq3 are linear
coefficients that corresponds to three features MMP,
MAP and MAF respectively for class MI Right Hand.
respectively for class MI Left Hand.

Discriminant Function for Class MI Right Hand:

Dry =Co+ Ly * MMP+ Ly « MAP + Lys « MAF (13)
where, C, is constant, L,;, Lp» and L3 are linear
coefficients that corresponds to three features MMP,

MAP and MAF respectively for class MI Right Hand.

After training of LDA classifier using training dataset,
the constants and linear coefficients are obtained as:

Cl = 1.0449 L;; = 02237 L;p = 0.3265
L3 =-0.3137
C2 = —1.0449 Ly = —0.2237 Ly = —0.3265
Lr3 =0.3137
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5. Conclusion

A 3-channel active electrode EEG device was designed
and total of 100 data has been recorded from 10
different subjects. For each subject, 5 data corresponds
to MI Left Hand and 5 data corresponds to MI Right
Hand. A set of 70 randomly selected data (36 from MI
Left Hand Class and 34 from MI Right Hand Class) was
used as training set and the remaining 30 data set was
used as test set. Training LDA classifier with training
data set gave the training accuracy of 88.6% . When the
trained classifier was tested with test data set, the
accuracy of 80% was obtained.

To increase the classification accuracy, the EEG device
with more than three channels could be used for more
robust data recording and the other non-linear
classification methods could also be used.
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