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Abstract
Salient object detection is a useful and important technique in computer vision, which can scale up the efficiency
of several applications such as object detection, object segmentation and content based image editing. In this
research work, an improved technique of salient object extraction using structured matrix decomposition and
contour based spatial prior is implemented. In order to assist efficient background-salient objects separation,
structured matrix decomposition model with two structural regularizations namely, tree-structured sparsity–inducing
regularization and Laplacian regularization are used. Tree-structured sparsity-inducing regularization captures
the image structure and enforces the same object to have similar saliency values and Laplacian regularization
enlarges the gap between background and the salient object. In addition, integrating general high level priors and
contour based spatial prior obtained from biologically inspired model is implemented to improve the efficiency of
saliency related tasks. The performance of the proposed method is evaluated on two demanding datasets, namely,
ICOSEG and PASCAL-S, including single object, multiple object and complex scene images. For PASCAL-S
dataset precision recall curve of proposed method starts from 0.81 and follows top and right-hand border more
than structured matrix decomposition which starts from 0.79 and similarily mean absolute error is also less by
0.019. Similarly, both visual and comprehensive evaluation using receiver operating characteristics curve and
mean absolute error for other dataset also shows improved result.
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1. Introduction

Determining visual saliency has been a fundamental
research problem in vision perception for a very long
period of time. It alludes to the recognition of crucial
visual information for further processing. Identifying
and segmenting the most conspicuous object from the
scene referred to as salient object detection and salient
object extraction is an important branch of visual
saliency. Our society has become more technologically
advanced than ever but our most advanced machines
and computers still struggle at describing what it sees in
series of photos. This is due to fact that human visual
system has innate capability to extract crucial
information from a scene but for machine same task is
difficult. Little by little, we are giving sight to the
machines or computers using state-of-the-art methods
from computer vision.

Due to its wide range of applications in computer vision,
such as object detection, object extraction, object
recognition and automatic image editing, salient object
extraction has grabbed attention over last decade. To
accomplish the task of salient object detection many
saliency models have been proposed. Based on whether
prior knowledge is used or not, current models fall in
two classes, namely, bottom-up and top-down.
Bottom-up models [1] and [2] are based on low level
features such as color, texture, location etc. The main
downside of bottom-up methods is detected salient
regions may only contain parts of salient object. On the
other side, top-down salient object detection methods
[3], [4] and [5] use high level human perceptual
knowledge to identify potential region of salient object.
These high level human perceptual knowledge are
generally context, semantics and background
knowledge which guide the saliency related tasks.
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However, efficiency of such models suffer from
diversity of object types which are encountered in real
world applications. Recent development for salient
object detection shows that trend is to combine
bottom-up cues with top-down cues to increase the
efficiency of saliency related tasks.
This research work mainly focuses on saliency related
tasks, salient object detection and salient object
extraction, and improved salient object extraction is
implemented using structured matrix decomposition and
contour based spatial prior.

2. RELATED WORK

In the past, to detect salient object many saliency
models have been proposed. Based on whether prior
knowledge is used or not, current models fall in two
classes, namely, bottom-up and top-down. Bottom-up
models [1] - [2] are based on low level features such as
color, texture and location. The main limitation of these
methods are that detected salient regions may only
contain parts of the target objects, or be easily mixed
with background. On the other hand, top-down models
[3], [4] and [5] are based on high-level human
perceptual knowledge, such as context, semantics and
background priors, to guide the subsequent saliency
computation. However, generalization and scalability of
these models suffers from high diversity of object types.
Fixation prediction methods proposed by L. Itti, C.
Koch, and E. Niebur [1] mainly focus on high – contrast
boundaries but ignores object surfaces and shapes. In
contrast, methods proposed by Q. Yan, L. Xu, J. Shi,
and J. Jia [4] may lacks its performance when there are
no dominant objects in the scene.
Recent state-of-the-art method for saliency related task
shows that trend is to combine bottom-up cues with
top-down cues [6], [7], [8], [9], [10] and [11] to assist
efficient salient object detection. Low-rank recovery
models have shown potential for salient object detection,
where matrix is decomposed into a low rank matrix
representing image background and a sparse matrix
identifying salient objects. Representative series of
methods [6] - [11] are based on low rank matrix
recovery theory [12]. Methods [6] - [10] lack
performance when there are similarities between the
salient objects and background or when background is
complicated.

Generally, these LR-based saliency detection methods
assume that an image can be represented as a
combination of a highly redundant information part
(e.g., visually consistent background regions) and a
sparse salient part (e.g., distinctive foreground object
regions). The redundant information part usually lies in
a low dimensional feature subspace, which can be
approximated by a low-rank feature matrix. In contrast,
the salient part deviating from the low-rank subspace
can be viewed as noise or errors, which are represented
by a sparse sensory matrix. Peng et. al. [11] proposes
salient object detection via structured matrix
decomposition to overcome these problems which
shows its decent accuracy for complex scene images.
In this research, integrating contour based spatial prior
with method proposed in [11] is proposed to improve
the task of detection which ultimately results better for
salient object extraction.

3. METHODOLOGY

We define salient object as a dominant object (e.g.,
people, animals, cars, flowers, or any other structures
that is dominant on image) in the given image. Having
an input image, it is first partitioned to perceptually
homogenous elements based on low rank matrix
recovery model for salient object detection [7]. After
partitioning, Feature matrix (F) is computed which
consists low level features and then simple linear
iterative clustering (SLIC) algorithm [13] is performed
to over-segment the image to generate super-pixels. On
the other hand, high level features like - color prior,
location prior, background prior, contour based spatial
prior is computed and index tree to encode structure
information is constructed. Graph based segmentation
algorithm [14] is implemented to merge spatially
neighboring patches. After obtaining feature matrix (F)
and index tree, structured matrix decomposition to
decompose feature matrix (F) into low-rank part (L)
and structured sparse part (S) is applied. From an input
image, contour based spatial prior is computed and
integrated to the structured matrix decomposition by
multiplying each component in feature matrix (F) to
guide matrix decomposition. After decomposition,
saliency map is calculated by transferring structured
sparse part (S) from feature domain to spatial domain.
Finally, with the help of original image salient object is
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extracted by making decision whether a pixel
corresponding to original image falls in detected salient
object or not.

3.1 Structured Matrix Decomposition

Given an input image I, it is partitioned into N patches
(super pixels) P = P1,P2,P3, . . .PN . For an input image
shown in Figure 1 generated super-pixels using simple
linear iterative clustering [13] is shown in Figure 2.

Figure 1: Input Image.

Figure 2: Generated Super-pixel for Input Image.

For each super pixel Pi a D dimensional feature (here
D = 53) vector is extracted and denoted as fi. Feature
vector forms a matrix representation of I, denoted as
F = f1, f2, . . . , fN . Feature matrix (F) consists of low
level feature including RGB color, steerable pyramids
[15] and Gabor filter [16] to construct 53-dimensional
feature representation. On top of super-pixels, an index
tree is constructed to encode structure information via
hierarchical segmentation. Then graph based

segmentation algorithm [14] is applied to merge
spatially neighboring patches. When both the feature
matrix (F) and index tree are ready, structured matrix
decomposition model as proposed in [11] is
implemented as follows:

min
L,S

Ψ(L)+αΩ(S)+βΘ(L,S) s.t. F = L+S (1)

Where Ψ(.) is a low-rank constraint to allow
identification of the intrinsic feature subspace of the
redundant background patches, Ω(.) is a structured
sparsity regularization to capture the spatial and feature
relations of patches in S, Θ(., .) is an interactive
regularization term to enlarge the distance between the
L and S, and α,β are positive tradeoff parameters.
Three interactive regularizations, Low-rank
regularization for image background,
Structured-sparsity regularization for salient objects and
Laplacian regularization to enlarge the gap between L
and S are performed as proposed in [11].
We further extend the structured matrix decomposition
based salient object detection to integrate high level
priors and contour based spatial prior. Three types of
high level priors, namely, location prior, color prior and
background priors are used. Specifically, the location
prior is generated by Gaussian distribution based on the
distance of the pixels from an image center and it is
denoted by l p. The color prior used here is same as [7],
which measures human eye sensitivity to red and yellow
color. Computed color prior is denoted by cp. The
background prior calculates the probabilities of image
regions connected to image boundaries [17] and is
denoted by bp. These three high level priors are
combined by taking weighted sum to get high level
prior denoted by hp as follows:

hp = w1 ∗ l p+w2 ∗bp+w3 ∗ cp (2)

Where, w1, w2 and w3 are weight given to each prior.
Values of w1, w2 and w3 lies between 0 and 1, and
satisfies w1 +w2 +w3 = 1. Contour based spatial prior
obtained from biologically inspired model is also
computed and later integrate contour based spatial prior
with obtained high level prior (hp) in Equation (2) to
get final high level prior map ( f p).

3.2 Contour Based Spatial Prior

To estimate contour based spatial prior, we first estimate
the edge response and corresponding orientations by
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using, biologically inspired method, efficient color
boundary detection with color-opponent mechanisms
proposed in [18] and contour based spatial prior is
computed using method proposed in [19]. Efficient
color boundary detection with color-opponent
mechanisms imitate the working of human visual
system to identify the edges from an images. This
mechanism involves processing of an image information
in three layers, namely, Cone layer, Ganglion/Lateral
Geniculate Nucleus (LGN) layer, and Cortex layer, of
our visual system.
In the Cone layer, three color components namely red,
green and blue from an input color image is extracted
and denoted by r, g and b respectively. To implement
color opponent mechanisms, yellow component of a
color image denoted by y is computed by taking average
of red and green component as follows:

y =
r+g

2
(3)

In order to obtain local color information, extracted four
components from an image are subjected to Gaussian
filters which simulates the receptive fields of the cones
in the retina as suggested by [20] and [21]. Here, all
the four components are smoothed with Gaussian filters
having same standard deviation (σ). The output of the
four components after simulated by Gaussian filters are
output of Cone layer and are denoted by Rg, Gg, Bg,
and Yg. Now the outputs of Cone layer are passed to
Ganglion/Lateral Geniculate Nucleus (LGN) layer.
In the Ganglion/Lateral Geniculate Nucleus (LGN) layer,
single opponent mechanism is implemented. Ganglion
and Lateral Geniculate Nucleus layers are implemented
in single layer because these cells have similar receptive
field properties. Response of this layer to Cone layer
outputs is mathematically described as follows:
For R-G channel:

S(x,y) = w1.Rg(x,y;σ)+w2.Gg(x,y;σ) (4)

For B-Y channel:

S(x,y) = w1.Bg(x,y;σ)+w2.Yg(x,y;σ) (5)

Where,

w1w2 ≤ 0 and |w1|, |w2| ∈ [0,1] (6)

Here, w1 and w2 are connection weights from cone layer
cells to Ganglion/Lateral Geniculate Nucleus (LGN)

layer. Weight w1 and w2 have always opposite sign.
Outputs from single opponent mechanisms i.e. (Srg, Sgr,
Sby and Syb) of Ganglion/Lateral Geniculate Nucleus
(LGN) layer is passed to Cortex layer and then double
opponent mechanisms is implemented in this layer. In
the cortex layer of V 1, the receptive fields of
color-sensitive neurons are both chromatically and
spatially opponent [18]. In particular, the oriented
double-opponent cells are considered to play an
important role in color boundary detection [22]. In this
layer boundary is detected by using set of filters having
orientation θ ∈ [0,2π]. Boundary responses at each
orientation is calculated using,

D(x,y;θi)= ∑
m,n∈Nr+g−

Sr+g−(x+m,y+n)∗RF(m,n;θi)+ ∑
m,n∈Nr+g−

Sr+g−(x+m,y+n)∗RF(m,n;θi)

(7)

Here, Sr−g+ = −Sr+g−, Nr−g+ and Nr+g− are the R –
off/G – on and R – on/G – off neurons in the V1 region.
Where θi is given as:

θi =
2(i−1)π

Nθ

(8)

And RF(x,y;θi) is determined by using following
equations,∣∣∣∣∣RF(x,y;θi) =

∂ f (x̃, ỹ)
∂ x̃

∣∣∣∣∣ (9)

f (x,y) =
1√

(2π(kσ2))
exp

(
−(x̃2 + γ2ỹ2

2(kσ2)

)
(10)

(
x̃
ỹ

)
=

(
xcos(θ)+ ysin(θ)
−xsin(θ)+ ycos(θ)

)
(11)

γ in Equation (10) is the spatial aspect ratio of Gaussian
that controls the ellipticity of receptive field. Based on
physiological findings [23] and [24], value of γ is
generally taken as 0.5. Similarly, product of k and σ

determines size of V1 neurons in cortex layer.
After calculating response at different orientation,
maximum response from each orientation is calculated
as follows:

D(x,y) = max{D(x,y;θi)|i = 1,2, ....Nθ} (12)
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Figure 3: Computed Contour Based Spatial Prior.

Now output of each channel after taking maximum at
Nθ orientation are represented by Drg, Dgr, Dby and Dyb.
These outputs are normalized linearly. Final response of
cortex layer is calculated by taking maximum response
at each channel, which is done as follows:

r(x,y)=max{Dci(x,y;θi)|ci ∈Drg,Dgr,Dby,Dyb} (13)

r(x,y) is the output of color opponent mechanisms for
color boundary extraction. r(x,y) gives the detected
color boundary and these are further processed using
non-maximum suppression for thinning edge.
Edges obtained after color opponent mechanisms are
subjected to non-maximum suppression for thinning
edge and thresholded to find dominant edges only. In
this research work threshold value 0.33 is used. After
obtaining dominant edge response and corresponding
orientations, for each edge pixel, Average Edge
Response (AER) is calculated in the left and right half
disk around it with disk radius dr = min(W,H)/3.
Where W and H are width and height of given image.
Then we carry out simple voting to compute rough
spatial weights of saliency Se. Voting here is: all of the
pixels within half disk having higher average edge
response between two half disks are voted 1, and the
pixels in the other half are voted 0.
To obtain final contour based spatial prior, Center-bias
weighting [25], [26] modeled by Gaussian masks with
standard deviation σc = dr is also considered and this
saliency is represented by Sc. Using saliency measure
Se and Sc, contour based spatial prior denoted by cbsp is
obtained by:

cbsp = Se +Sc (14)

Obtained contour based spatial prior for input image
shown in Figure 1 is shown in Figure 3.

3.3 Integrating Contour Based Spatial Prior

Since contour based spatial prior is determined pixel
wise while high level priors are computed for super-
pixels. To integrate contour-based spatial prior (cbsp)
with high level prior (hp) obtained earlier in Equation
(2), we map generated N patches (super-pixels) over
contour based spatial prior and average value of all the
pixels value within each patch is calculated to obtain
final contour based spatial prior. Final contour based
spatial prior is denoted by f cbsp. Mapped N patches
(super-pixels) over contour based spatial prior for input
image shown in Figure 1 is shown in Figure 4.

Figure 4: Mapped N patches over contour based spatial
prior.

After finding final contour based spatial prior ( f cbsp),
it is combined with previously obtained high level prior
(hp) by taking weighted sum to get final high level prior
denoted by f p as follows:

f p = m1 ∗hp+m2 ∗ f cbsp (15)

Where, m1 and m2 are weight given to each prior.
Values of m1 and m2 lies between 0 and 1, and satisfies
m1 +m2 = 1.
Final high level prior, f p ∈ [0,1] for each patch Pi

indicates the likelihood that Pi belongs to a salient
object based on high level information. This prior is
encoded into the structured matrix decomposition by
multiplying each component in feature matrix (F) to
guide matrix decomposition.
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Figure 5: Saliency Map.

3.4 Salient Object Detection

After decomposition of feature matrix (F) into low-rank
part (L) and structured sparse part (S), saliency map
is calculated by transferring structured sparse part (S)
from feature domain to spatial domain as in [11]. For an
input image shown in Figure 1 detected salient object i.e.
saliency map is shown in Figure 5.

Figure 6: Extracted Salient Object.

3.5 Salient Object Extraction

Finally, salient object is extracted by making decision
whether a pixel corresponding to original image falls
in detected salient object (saliency map) or not. This
can be done by taking each pixel from original image
and checking whether that pixel belongs to detected
salient region or not. If that pixel belongs to detected
salient region then value of that pixel is taken otherwise
some standard color which will be background color in
extracted image is set. Extracted salient object from an
input image shown in Figure 1 using structured matrix
decomposition with contour based spatial prior (SMD

with CBSP) is shown in Figure 6.

4. EXPERIMENT

4.1 Experimental Setup

To evaluate the performance of proposed method to
detect and extract salient object from an image, series of
experiments are conducted using different images and
standard datasets involving various scenes.
Experimental analysis on ICOSEG [27] and PASCAL-S
[28] datasets is performed to evaluate metrics like
receiver operating characteristic (ROC) curve, precision
recall (PR) curve and Mean Absolute Error (MAE) for
comprehensive evaluation.

Figure 7: Output Images (a) Original images (b)
Detected images by structured matrix decomposition
(SMD). (c) Detected images by SMD with CBSP. (d)
Ground Truth (e) Extracted images using SMD with
CBSP.

Different parameters for the implementation of this
research work are set as follows. While computing
contour based spatial prior, in color opponent
mechanisms value of sigma (σ) is set to 1.5, cone input
weights are set to -0.6 and 1, and number of orientation
for color opponent mechanisms are set to 8. Similarly,
value of γ is chosen to be 0.5 based on physiological
findings [23] and [24].
Similarly, while integrating high level priors and
contour based spatial prior values of weight w1, w2 and
w3 while finding high level prior are set to 1/3 and value
of weights m1 and m2 while integrating high level prior
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with final contour based spatial prior is set to 1/2.

4.2 Experimental Results

To validate the effectiveness of proposed method, first,
visual analysis between the output of structured matrix
decomposition (SMD) and structured matrix
decomposition with contour based spatial prior (SMD
with CBSP) is performed in Figure 7. The detection and
extraction results for four images are shown. For these
four examples, output of proposed method is closer to
ground truth as compared to output of structured matrix
decomposition model.

Figure 8: ROC curve for ICOSEG [27] Dataset.

Figure 9: ROC curve for PASCAL-S [28] Dataset.

Similarly, for comprehensive analysis, quantitative
comparison on two different datasets using three
different evaluation metrics like receiver operating
characteristics (ROC) curve, precision-recall (PR) curve
and mean absolute error (MAE) is performed. ROC
curve for ICOSEG [27] dataset using SMD and SMD
with CBSP shown in Figure 8 and similarly for

PASCAL-S [28] dataset shown in Figure 9. For both
datasets ROC curve obtained using SMD with CBSP
follows the left-hand border and the top border of the
receiver operating characteristics space more than using
SMD indicating SMD with CBSP has better accuracy.

Figure 10: PR curve for ICOSEG [27] Dataset.

Figure 11: PR curve for PASCAL-S [28] Dataset.

Table 1: Comparision of Mean Absolute Error

Mean Absolute Error
Datasets SMD SMD with CBSP

PASCAL-S 0.208472 0.189488
ICOSEG 0.138161 0.118017

In addition to ROC curves, precision-recall (PR) curve
is also plotted for ICOSEG [27] dataset using SMD and
SMD with CBSP shown in Figure 10 and similarly for
PASCAL-S [28] dataset shown in Figure 11. For both
datasets PR curve obtained using SMD with CBSP
follows the right-hand border and the top border more
than using SMD.
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As complementary to ROC and PR curves, Mean
Absolute Error (MAE) is evaluated and tabulated in
Table 1 for quantitative analysis. It determines the mean
difference between the ground truth and saliency map in
pixel level. For the both datasets MAE is less using
SMD with CBSP than SMD.

Conclusion

This research work aims to improve the performance of
structured matrix decomposition model for saliency
related tasks by integrating contour based spatial prior
obtained from biologically inspired framework. The
proposed method can detect and extract salient object
and shows improvement over structured matrix
decomposition model. Its effectiveness is demonstrated
by various experiments on two widely used datasets.
Additionally, method to integrate contour based spatial
prior to the structured matrix decomposition model is
also presented. Exploring more robust high-level prior
may merit further study for saliency related tasks.
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