
Proceedings of IOE Graduate Conference, 2016
pp. 329–336

A Map-Reduce Model to Find Longest Common Subsequence
using Non-alignment Based Approach

Narayan Prasad Kandel 1, Shashidhar Ram Joshi 2

Department of Electronic & Computer Engineering, Pulchowk Campus, Institute of Engineering, Tribhuvan University, Nepal
Corresponding Email: 1 npk.And@gmail.com

Abstract
Biological sequences Longest Common Subsequence (LCS) identification has significant applications in
bioinformatics. Due to the emerging growth of bioinformatics applications, new biological sequences with longer
length have been used for processing, making it a great challenge for sequential LCS algorithms. Few parallel
LCS algorithms have been proposed but their efficiency and effectiveness are not satisfactory with increasing
complexity and size of the biological data. An non-alignment based method of sequence comparison using
single layer map reduce based scalable parallel algorithm is presented with some optimization for computing LCS
between genetic sequences.

Keywords
Longest Common Subsequence – MapReduce – Hadoop

1. Introduction

Biological sequence comparison programs have
revolutionized the practice of biochemistry, molecular
and evolutionary biology. Pairwise comparison is the
method of choice for many computational tools
developed to analyze the deluge of genetic sequence
data [1].

A fundamental operation in bioinformatics involves the
comparison of genetic (DNA) sequences. The similarity
between genetic sequences is a strong indicator of
evolutionarily preserved characteristics. This property
has been successfully used in determining
pathologically important bacteria, viruses and fungi.

Among many sequences comparison tools, the common
techniques include alignment based sequences
comparison technique. It can be further divided into
global alignment based technique and local alignment
based technique. Global alignment (eg:
Needleman-Wunsch [2]) based technique align entire
section whereas local alignment based technique (eg:
Smith - Waterman [3]) align the smaller sections. The
choice of alignment method is depend on the type of
analysis desired. However, both these methods are
heavily dependent on the quality of sequence data and

slight variance resulting from experimental or technical
limitations can significantly affect the comparison
results.

An alternative approach like alignment-free technique is
becoming increasingly important in dealing with the
exponential growth of genetic sequence data,
classification and the grouping of organisms based on
these sequences as such approaches matches the relative
(as opposed to the exact) order of the base pairs in the
sequence. Advancements in sequencing technology
have provided a deluge of genetic data. The Genbank, a
public repository of genetic sequence data, reported
194463572 sequence records in its 214th release on
June 15, 2016. Analyzing such large datasets on
uniprocessor machines is an extremely time-consuming
process. It is imperative, therefore, to harness the power
of high-performance computing to facilitate our
understanding of this high throughput data.

2. LITERATURE REVIEW

A large number of research has been conducted in
finding similarities between two gene species. The
Needleman–Wunsch [2] algorithm was the first
application of dynamic programming to find a global

A Map-Reduce Model to Find Longest Common Subsequence using Non-alignment Based Approach

alignment between two sequences. This algorithm leads
to the evolution of various efficient LCS algorithms.
The major drawback of the Needleman-Wunsch
algorithm is that it is only suitable for comparing two
sequences with similar length. Later, Hirschberg
algorithm [4], which is also know as divide and conquer
version of Needleman-Wunsch Algorithm, was evolved
from Needleman- Wunsch algorithm with some
optimization. Hunt-Szymanski [5] propose an
optimization to Hirschberg algorithm.

Various parallel algorithms like CREW PRAM model,
Systolic arrays have been proposed in the earlier days to
reduce the computation time. In the recent time Wan,
Liu, Chen proposed Fast LCS algorithm [6]. Fast LCS’s
efficiency has been further improved by Efficient Fast
Pruned LCS EFP LCS [7]. A parallel LCS algorithm
[8] based on dynamic programming has also been
proposed. Li, Wang & Bao [9] tried to solve LCS
problem using automaton based technique in multi-level
hadoop mapreduce. Beside that, Bohara & Joshi [10]
implement multi-level alignment based hadoop
mapreduce technique to solve the lcs problem.

2.1 Needleman-Wunsch algorithm

The Needleman–Wunsch algorithm performs a global
alignment of two sequences. It is commonly used in
bioinformatics to align protein or nucleotide sequences.
The algorithm was published in 1970 by Saul B.
Needleman and Christian D. Wunsch. The
Needleman–Wunsch algorithm is an example of
dynamic programming and was the first application of
dynamic programming to biological sequence
comparison. It is sometimes referred to as the Optimal
matching algorithm. This global sequence alignment
method explores all possible alignments and chooses
the best one (the optimal global alignment). It does this
by reading in a scoring matrix and a gap penalty
(penalties) that contains values for every possible
residue or nucleotide match and summing the matches
taken from the scoring matrix.

2.2 Hirschberg algorithm

Hirschberg’s algorithm [4] is an optimize version of
Needleman-Wunsch algorithm that used dynamic
programming algorithm to find the optimal sequence
alignment between two strings. Optimality is measured

with the Levenshtein distance, defined to be the sum of
the costs of insertions, replacements, deletions, and null
actions needed to change one string into the other.
Hirschberg’s algorithm is commonly used in
computational biology to find maximal global
alignments of DNA and protein sequences.

If x and y are strings, where length(x) = n and
length(y) = m, the Needleman-Wunsch algorithm finds
an optimal alignment in O(nm) time using O(nm) space.
Hirschberg’s algorithm is a clever modification of the
Needleman-Wunsch Algorithm which still takes O(nm)
time, but needs only O(min{n,m}) space.

2.3 Hunt-Szymanski algorithm

Hunt-Szymanski algorithm [5] present an improved
version of the Hirschberg algorithm. It used row-wise
processing technique where right to left traversal is
done to find the lcs. It solves the problem of recovering
an LCS in O(|M|log(n)) where |M| denotes the number
of all matches.

2.4 Fast LCS algorithm using Map Reduce

Li, Wang & Bao [9] purpose finite automaton based
technique that implements fast lcs [6] algorithm to find
the multiple longest common subsequences. The
authors suggested that time required for calculating
MLCS is reduced significantly using FACC Technique
in compared to the time required using fast LCS [6], it
uses multilevel map reduce technique and map reduce is
used particularly to construct successor table of
different string. Multilevel map reduce program based
on fast lcs algorithm is presented by Bohara & Joshi in
[10]. Though it is implemented via map reduce and
time might be reduced if number of the cluster devices
increase but much of the time is invested in creating,
managing the map reduce jobs and waiting for the
results of the previous job so it fails in utilizing the
power of the distributed computing due to the multilevel
map reduce strategy.

2.5 MapReduce

MapReduce is a programming model and an associated
implementation for processing and generating large data
sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value

330

Proceedings of IOE Graduate Conference, 2016

pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key [11].

Programs written in this functional style are
automatically parallelized and executed on a large
cluster of commodity machines. The runtime system
takes care of the details of partitioning the input data,
scheduling the program’s execution across a set of
machines, handling machine failures, and managing the
required inter-machine communication. This allows
programmers without any experience with parallel and
distributed systems to easily utilize the resources of a
large distributed system. A typical MapReduce
computation processes many terabytes of data on
thousands of machines. Programmers find the system
easy to use: hundreds of MapReduce programs have
been implemented and upwards of one thousand
MapReduce jobs are executed on Google’s clusters
every day. MapReduce provides an abstraction that
involves the programmer defining a ”mapper” and a
”reducer,” with the following signatures:

Map: (value 1, key1) −→ list (key2, value2)

Reduce: (key2, list (value2) −→ list (value2).

3. METHODOLOGY

The longest common subsequence algorithm finds the
longest subsequence between two strings. In contrast to
the substring, the subsequence denotes a series of letters
from the string which while being in order, need not be
consecutive. For example, between ATCG and CTCAG,
the longest common substring is TC, while the longest
common subsequence is TCG.

LCS can help identify the key nucleotides across
genetic sequences and is considerably less affected by
the occasional sequencing error. This method is also
useful for identifying potential regions of small
mutations by analyzing the portions of the string not
present in the LCS.

The basic block diagram of the program execution is
shown in figure 1 and explained below.

1. Input string. It is converted to hadoop input by
splitting it in multiple parts. The process of
splitting given string to the multiple parts is
known as preprocessing.

2. Splitted String. It is now feed to mapper to
calculated the lcs of each small chunk.

3. Preliminary lcs. This is output of the mapper.
Now it is feed to combiner which used parallel
algorithm to find intermediate lcs.

4. Intermediate lcs. This is output of the combiner.
In reducer, Multiple intermediate lcs are merged
together using parallel algorithm recursively until
final lcs is generated.

5. Final lcs. output of the reducer.

Figure 1: Program Execution Block Diagram

3.1 Computing LCS using Row-wise
processing Technique

The row-wise processing technique [5] is inherited from
the traditional approach for filling the dynamic
programming table. However, this time, we concentrate
only on those table entries which correspond to a match.
Each dominant match defines a new corner to a contour
line. To maintain the columns where all contour lines
cross the current row, we use the array
MinYPrefix[1..p], where MinYPrefix[l] gives the
Y-index where the l’th contour line is located. As the
name of the array suggests, the value of MinYPrefix[l]
may be regarded as a cursor, which indicates the
minimum length prefix of Y that is needed to produce a
common subsequence of length l with the first i
elements of X. Value p denotes r(X[1..i], Y[1..n]), that
is, the number of contour lines crossing row i. Initially,
the values of MinYPrefix are initialized to ’undefined’.

331

A Map-Reduce Model to Find Longest Common Subsequence using Non-alignment Based Approach

Table 1: Table for computing lcs

Row
MinYPrefix

0 1 2 3 4 5 6
0 0
1 0 3
2 0 2 5
3 0 1 4
4 0 1 4
5 0 1 2 5
6 0 1 2 5 8

Given the example strings X=abcdbb and Y=cbacbaaba,
the values of the array change as follows (undefined
values are represented by n+1; the leftmost entry acts as
sentinel and is set to zero):

To maintain the MinYPrefix values when moving from
row to row, we need the following result.

Update rule: Let us assume that we are processing row i.
For each open interval MinY Pre f ix[l]..MinY Pre f ix[l +
1], (l=0..r), find the matches (i,j) which fall into it (i.e.
matches for which the j value is in the interval). The right
boundary of the interval is kept unchanged, of no such
match exists. Otherwise, it is updated to the smallest
such j value (leftmost match in the interval). Note that
the updates are simultaneous.

For example, when moving from row 2 to row 3 in the
above example, we notice that X [3] = Y [4] and
MinY Pre f ix[1]<4<MinY Pre f ix[2], so we update
MinY Pre f ix[2] to 4. The general scheme for advancing
in the dynamic programming table is the following

begin
for i:=1 to m

do MinYPrefix[i] := n+1;
MinYPrefix[0] := 0; r := 0;
for i := 1 to m do

/*Update array values for row i*/
for j := 0 to r

if range[MinYPrefix[j]+1..
MinYPrefix[j+1]-1] contains
matches then
begin

MinYPrefix[j+1] :=
min{l|(i, l) is a match in
this range};

if j=r then r:=r+1;
end

return r;
end;

The Algorithm used to backtrack the LCS is as follow

begin
last_char = True
lcs_str1_index = []
for i := lcs_length to 0
for j := x_str_length to 0

if i+1 > len(MinYPrefix[j-1]) or
MinYPrefix[j][i] <

MinYPrefix[j-1][i]
if last_char
last_char = False

lcs_str1_index.append(j-1)
elif not last_char &

MinYPrefix[j][i]
== MinYPrefix[j-1][i] &

str1[j-1] = str2[MinYPrefix[j][i]
lcs_str1_index.append(j-1)

lcs_str = ’’
for s_index in lcs_str1_index
lcs_str = str1[s_index] + lcs_str

return lcs_str
end;

In this backtracking algorithm, different logic is
implemented between last char of the LCS index and
other indexes. This is done in order to extract the LCS
that has minimum ending index among all possible
ending indexes.

3.2 Parallel Implementation

A scalable parallel version of the LCS algorithm,
proposed in [1], is outlined in figure 2. First, each string
is divided across the processors and the LCS of the
substrings in each processor (LCS1 and LCS2) are
computed. Then the portions of strings (grey areas) that
were beyond the first and last positions in the LCS are
interchange and LCS for these previously unused
strings is computed. Finally, the respective portions are
combined to obtain the complete LCS.

332

Proceedings of IOE Graduate Conference, 2016

Figure 2: A Schematic Diagram of the Parallel LCS
Algorithm

4. Result and Discussion

In implementing MapReduce strategy, the program is
divided into 4 steps, which are: (1) Preliminary Step,
(2) Mapper Step, (3) Combiner Step and (4) Reducer
Step. The output of the one step is fed to the consequent
next step as input and final step output is received as
program output. We have used JSON format as an
intermediate data format. The example of input data and
output data format for each of the processes is as
follows:

1. Preliminary Step

Here, we have to calculate the LCS of strings str1
and str2. First, we take partition size as 15 and
divide each string as a 15 char substring and keep
the string sequence order. This work is done in
Preliminary Step.

Input
str1=ABCBDABATCGACGATCGGGGTTCT
TCACCACGGGGTTCTTCACCAGAGTTATCT
str2=BDCABACTCAGGCACCGCAGTGACA
AAAGTCGCAGTGACAAAAGTCAGGACGGC
Partition size: 15

Output
1 ”a”: ”ABCBDABATCGACGA”, ”index”: 0,
”b”: ”BDCABACTCAGGCAC”
2 ”a”: ”TCGGGGTTCTTCACC”, ”index”: 1,
”b”: ”CGCAGTGACAAAAGT”
3 ”a”: ”ACGGGGTTCTTCACC”, ”index”: 2,
”b”: ”CGCAGTGACAAAAGT”

4 ”a”: ”AGAGTTATCT”, ”b”: ”CAGGACGGC”,
”index”: 3

2. Mapper Step
The preprocess string is fed to the mapper. Mapper
Process is responsible for finding LCS of the small
substring of str1 and str2. Along with LCS, it also
calculates A, B, E, F and its index which is helpful
to calculate combine LCS in an upcoming step.

Input
Mapper1: ’a’: ’ABCBDABATCGACGA’,
’index’: 0, ’b’: ’BDCABACTCAGGCAC’
Mapper2: ’a’: ’TCGGGGTTCTTCACC’,
’index’: 1, ’b’: ’CGCAGTGACAAAAGT’
Mapper3: ’a’: ’ACGGGGTTCTTCACC’,
’index’: 2, ’b’: ’CGCAGTGACAAAAGT’
Mapper4: ’a’: ’AGAGTTATCT’, ’b’:
’CAGGACGGC’, ’index’: 3

3. Combiner Step
Combiner step combines the output of the 2
mappers within the system to give intermediate
output.

Input
Combiner1:
Key: 0
Value: [[0, ’A’: ’ABC’, ’a’: 0, ’B’: u”, ’E’: u”,
’lcs’: ’BDABATCAGA’, ’F’: ’C’, ’f’: 15, ’b’: 15,
’e’: 0, ’s2’: ’BDCABACTCAGGCAC’, ’s1’:
’ABCBDABATCGACGA’], [1, ’A’: ’T’, ’a’: 0,
’B’: u”, ’E’: u”, ’lcs’: ’CGGTAC’, ’F’:
’AAAAGT’, ’s2’: ’CGCAGTGACAAAAGT’, ’f’:
15, ’b’: 15, ’e’: 0, ’s1’:
’TCGGGGTTCTTCACC’]]

Combiner2:
Key: 1
value: [[2, ’A’: ’A’, ’a’: 0, ’B’: u”, ’E’: u”, ’lcs’:
’CGGTAC’, ’F’: ’AAAAGT’, ’s2’:
’CGCAGTGACAAAAGT’, ’s1’:
’ACGGGGTTCTTCACC’, ’f’: 15, ’b’: 15, ’e’:
0], [3, ’A’: u”, ’a’: 0, ’B’: u”, ’E’: ’C’, ’lcs’:
’AGGAC’, ’F’: ’GGC’, ’s2’: ’CAGGACGGC’,
’s1’: ’AGAGTTATCT’, ’f’: 9, ’b’: 10, ’e’: 0]]

333

A Map-Reduce Model to Find Longest Common Subsequence using Non-alignment Based Approach

4. Reducer Process
Finally, reducer step reduces the intermediate
output from all combiner to one final lcs.

Input:
Key: lcs
value: [[0, ’a’: 0, ’A’: u”, ’b’: 30, ’e’: 0, ’lcs’:
’BDABATCAGACCGGTAC’, ’f’: 30, ’s2’:
’BDCABACTCAGGCACCGCAGTGACAAAAGT’,
’s1’:
’ABCBDABATCGACGATCGGGGTTCTTCACC’,
’F’: u”, ’B’: u”, ’E’: u”], [1, ’a’: 0, ’A’: u”, ’b’:
25, ’e’: 0, ’lcs’: ’CGGTACAGGAC’, ’f’: 24, ’s2’:
’CGCAGTGACAAAAGTCAGGACGGC’, ’s1’:
’ACGGGGTTCTTCACCAGAGTTATCT’, ’F’:
u”, ’B’: u”, ’E’: u”]]

Output:
”length”: 28, ”lcs”:
”BDABATCAGACCGGTACCGGTACAGGAC”

The parallel algorithm suggested by [1] highly depend
on both starting index and ending index of LCS in both
string. If we are able to extract LCS that lie in middle of
both given string then the parallel algorithm would give
us the sequential equivalent result in much more less
time.

With modified LCS backtracking algorithm, for the
repetition character, the index of the character that lies
toward center is selected. The example cases are:

1. LCS(’TCG’, ’TCAGGGGGGGGGGGGGGGG’)
= ’TCG’
index: str1 = [0,1,2], str2 = [0,1,3]

2. LCS(’TTTTTTTTTTTTTTTTCG’, ’TCAG’) =
’TCG’
index: str1 = [15, 16, 17], str2 = [0,1,3]

3. LCS(’TCGGGGGGGGGGGGGGGGG’,
’TCAG’) = ’TCG’
index: str1 = [0,1, 2], str2 = [0, 1, 3]

4. LCS(’TCG’, ’TTTTTTTTTTCAG’) = ’TCG’
index: str1 = [0,1, 2], str2= [0, 12, 10]

Here, cases 1, 2, 3 work as expected but case 4 doesn’t
work as expected. This is because, when constructing

matrix we only take least possible index of string 2
required to get LCS of length x when selecting n first
character in string 1.

4.1 Complexity Analysis

The time complexity of core LCS computing algorithm
is O(|M|log(n)) where |M| denotes the number of all
matches. The space complexity of the algorithm is
O(n2).

4.2 Run Time of Algorithm

Performance is measured by running this algorithm for
two input sequences. Table 2 shows the time taken to
get result with a single node. Two input sequences are
run for 10 times and the average time is computed. The
time taken by this algorithm is listed below.

Time to compute LCS between 2 strings with length
17990 and 17990 with per process length of 1500, 500,
100 and 50 is shown in Table 2.

Table 2: Output time (in sec) comparison with different
per process length of the string

S.N.
Per Process Length

1500 500 100 50
1 188 23 2.010 .940
2 190 22 1.951 .961
3 204 22 2.030 .919
4 197 22 2.024 .958
5 200 22 2.093 .961
6 191 23 2.012 .943
7 197 22 1.960 .961
8 195 22 1.981 .927
9 206 38 2.057 .909
10 204 24 2.021 .949

average 197 24 2.014 .943
lcs length 17984

actual length 17984

As shown in Table 2, time taken by algorithm is decrease
with decreasing number of per process string length.

334

Proceedings of IOE Graduate Conference, 2016

4.3 Hadoop Runtime Analysis

The scalability of the algorithm is studied by measuring
the time to compute LCS between two string by running
it on Amazon ElasticMapReduce platform with varying
number of node which is shown on Table 3 and Table 4
respectively.

Table 3: LCS time (in sec.) comparison on different per
process string length and processor number of 2 string
with length 10,000

No. of Per Process String Length
Processor 200 500 1000 1500 2000

1 132.9 184 262.4 499.7 609
3 119.8 133.2 160.6 332.3 435
5 116.6 128.1 182.4 286.5 343.5
10 - 109.5 - - -
20 - 106.2 - - -

lcs length 6317 6416 6464 6466 6485
actual
length

6514

Table 4: LCS time (in sec.) comparison on different
processor number of 2 string with length 200,000

No. of Per Process String Length
Processor 500

10 609.8
20 587.3

lcs length 128,667
actual length 130,814

With reference to the time taken to computer LCS as
presented in Table 3, it is fair to say that the algorithm is
scalable. The accuracy of the algorithm goes on
increasing with increase in per process length as with
increase in per-process length there are less number of
parallel merge.

Table 4 shows the time required to compute LCS of the
strings with length 2,00,000. It is discovered that the
time required to compute the LCS of strings having
length 2,00,000 with 500 per process string length using
10 nodes is equal to the time taken to compute the LCS

of strings having length 10,000 with 2000 per process
string length using 1 node. This shows that, it is feasible
to compute the LCS between 2 strings having very large
length using group of low processing power computer.
This will help to do cost effective analysis of the
similarities between genetic sequences within no time.

The time required to find the LCS between 2 string is
better than the MapReduce algorithm proposed by
Bohara et. al [10]. Bohara et. al performed the study to
find whether it is possible or not to find LCS using
MapReduce approach. Bohara suggested that it is
possible to calculate the LCS using MapReduce and
time required will be reduced with the addition of the
node. But Bohara didn’t included the length of the input
string so it is difficult to conclude how fast this
algorithm is.

4.4 Verification

The output result is verified by comparing it with
sequential program result. Total runtime is calculated by
taking an average of 10 runtimes and it is later
compared with corresponding sequential program
runtime.

5. Conclusion

A basic model for MapReduce-based parallel algorithm
for gene sequence comparison has been developed.
Although there are few parallel algorithms for LCS
computation, they are not reliable as the
MapReduce-based solution in the context of fault
tolerance and concurrency control. This
MapReduce-based model handles all the different
aspects of distributed computing from load balancing to
synchronization automatically. The algorithm is highly
scalable and cost effective. Hence, the large number of
gene data can be processed at short period if we use a
large number of nodes created from commodity
computers. The time to calculate LCS can also reduce
by decreasing the per process string length. But it might
result in a decrease in LCS length, as there is trade-off
between per process string length and accuracy.

5.1 Limitation

The parallel algorithm might not return longest common
subsequence as multiple starting and ending point are

335

A Map-Reduce Model to Find Longest Common Subsequence using Non-alignment Based Approach

possible for the same length of the LCS substring
between two strings. This is because, with a different
value of starting and ending sequence, we have different
A, B, E, F. So, there is always a possibility of not having
longest subsequence.

5.2 Further Enhancement

There is a special case where this algorithm don’t work
which is listed in limitation. So we can optimize
algorithm to overcome the listed problem. This thesis
can be extended to study relation between occurrences
of multiple LCS across the same species to intra-species
mutations. Also, we can enhance it to compare the
runtime between different distributed platform like
Apache Spark, Google dataflow and Hadoop cascading.

References

[1] S. Bhowmick, M. Shafiullah, H. Rai, and D.
Bastola, “A Parallel Non-Alignment Based Approach to
Efficient Sequence Comparison using Longest Common
Subsequences,” J. Phys.: Conf. Ser. Journal of Physics:
Conference Series, vol. 256, p. 012012, Jan. 2010.

[2] S. B. Needleman and C. D. Wunsch, “A general method
applicable to the search for similarities in the amino acid
sequence of two proteins,”Journal of Molecular Biology,
vol. 48, no. 3, pp. 443–453, 1970.

[3] T. F. Smith and M. S. Waterman, “Comparison of
biosequences,” Advances in Applied Mathematics, vol.
2, no. 4, pp. 482–489, 1981.

[4] D.S. Hirschberg, A linear space algorithm for computing
maximal common subsequences, Comm. Assoc. Comput.
Mach., 18:6, 341–343, 1975.

[5] Hunt, James W. and Szymanski, Thomas G. May 1977.
”A Fast Algorithm for Computing Longest Common
Subsequences”. Comm. ACM, vol.20 no.5; 350-353.

[6] Chen Y, Wan A and Liu W, ”A fast Parallel Algorithm for
finding the Longest Common Subsequence of multiple
biosequences” , BMC Bioinformatics 7 (suppl 4), 2006

[7] Eswaran S and RajaGopalan SP, ”An Efficient
Fast Pruned Parallel Algorithm for finding LCS in
Biosequences”, Anale Seria Informatica. Vol. VIII fasc.1,
2010.

[8] Dhraief A, Issaoui R and Belghith A, ”Parallel
Computing the Longest Common Subsequence (LCS)
on GPUs: Efficiency and Language Suitability”,
INFOCOMP 2011: The First International Conference
on Advanced Communications and Computation, 2011

[9] Li, Yanni, Yuping Wang, and Liang Bao. ”FACC: a
novel finite automaton based on cloud computing for
the multiple longest common subsequences search.”
Mathematical Problems in Engineering 2012 (2012).

[10] Bohara Jnaneshwar, Joshi Shashidhar Ram, ”A
MapReduce Based Parallel Algorithm for Finding
Longest Common Subsequence in Biosequences”, IOE
Graduate Conference Journal, 2013

[11] Dean, Jeffrey, and Sanjay Ghemawat. ”MapReduce:
simplified data processing on large clusters.”
Communications of the ACM 51.1 (2008): 107-
113.

336

	Introduction
	LITERATURE REVIEW
	Needleman-Wunsch algorithm
	Hirschberg algorithm
	Hunt-Szymanski algorithm
	Fast LCS algorithm using Map Reduce
	MapReduce

	METHODOLOGY
	Computing LCS using Row-wise processing Technique
	Parallel Implementation

	Result and Discussion
	Complexity Analysis
	Run Time of Algorithm
	Hadoop Runtime Analysis
	Verification

	Conclusion
	Limitation
	Further Enhancement

	References
	References

