Proceedings of IOE Graduate Conference, 2016
pp- 317-322

Improving Nepali Document Classification by Neural Network

Kaushal Kafle ', Diwas Sharma 2, Aayush Subedi 3, Arun Kr. Timalsina *

1.2.3.4 Department of Electronics and Computer Engineering, Pulchowk Campus, Institute of Engineering, TU, Nepal
Corresponding Email: 4 t.arun@ioe.edu.np

Abstract
Text classification is the task of classifying documents into predefined categories automatically. This paper
compares different text classification methods based on their effectiveness on the Nepali language.

The lack of a standard Nepali corpus prompted for the creation of a manual data set by crawling various Nepali
news sites. Nepali document classification is severely limited by the complexity of the language morphology.
Document classification with word2vec employs neural network and simplifies the process of automatically
categorizing Nepali documents while increasing the precision and recall over previously implemented techniques
such as TF-IDF. Results from 3 models, SVM with TF-IDF only, SVM with word2vec and cosine similarity with
TF-IDF and LSI show that the word2vec model outperforms the TF-IDF only method by 1.6 per cent and the

cosine similarity with LS| method by 2.2 per cent.
Keywords

Nepali Corpus

Support Vector Machine — Text Classification — Feature extraction — TF-IDF — Word2vec — LSI — Neural Network —

Introduction

Automatic document classification has been a
computationally challenging part of any language. It is
even more challenging to algorithmically classify
documents written in a language such as Nepali that is
morphologically rich and structurally complex. This is
also the primary reason why there is a lack of research
done on Nepali language based text classifiers. A job of
a text classifier is to automatically assign a given
document to its pre-specified category. Documents may
be classified based on a number of attributes such as
document types (images, videos, texts, etc), their

contents (stories, novels, poems, etc), their authors, etc.

It has a wide range of applications such as spam
filtering, document indexing, text filtering, news
organization, etc.

The first problem of text classification is its feature
extraction. It consists of acquiring a vector
representation of the documents that can be used by the
learning algorithm. Two methods, TF-IDF and
word2vec [1], have been used for feature extraction in
the paper. TF-IDF is a simple method that does not
consider the order of the words in a sentence for

classification purposes. Word2vec, however, is used
when the contexts of the words are also to be taken into
consideration. This paper focuses on the effects and
efficiency of both the techniques along with their
comparison with each other.

Feature extraction using TF-IDF involves the
calculation of IDF, which gives a measure of how
important a word is to categorize a document. For
example, the word HYIE’ generally appears in
documents related to business only, so its IDF measure
is relatively high. On the other hand, word such as
‘gEII has a high frequency in all documents so it is
not particularly useful to determine which category a
document should belong to. Hence, its IDF measure is
low.

On the other hand, when the skip-gram architecture for
word2vec is given any word, it calculates the probability
of other words that occur in its surrounding within a
specified window. For example, words such as
TTTAIT-T and ‘FIFHT have a high probability of
appearing nearby ‘FHTSHTST ", but unrelated words like
‘T and ‘“wHT have a low probability. This is
reflected on the representation of the words by
word2vec. The word2vec algorithm in this classification

Improving Nepali Document Classification by Neural Network

model has been implemented using gensim.[2]

Classification of a document is done using either a
supervised or an unsupervised learning method. SVM
(Support Vector Machine) is an example of a supervised
learning method. It is observed that SVMs consistently
achieve good performance on text categorization tasks,
outperforming existing methods substantially and
significantly [3]. Using one-vs-all technique, SVM is
used to build a model that can automatically assign
input documents into any one of the categories based on
the training data. The performance of the model largely
depends on the configuration of the hyper-parameters of
the training algorithm. Hyperopt [4], a Python library
for serial and parallel optimization, has been employed
for calculating the optimal value of the regularization
parameter (C) in SVM.

1. Related Works

Primarily, most of the works on text classification were
based on English language. Apart from English
language, some form of text classification system exists
for European languages such as Italian, German,
Spanish, etc. and Asian languages such as Arabic,
Chinese and Japanese.

Nepali is a morphologically rich language that has a
fairly complicated orthography. Due to this, many
language features has to be taken into consideration to
build an efficient text classification model. Even so,
commendable efforts have been made in the field of
Nepali text classification using various methods.

Shahi and Yadav analyse the effects of two classification
techniques, the Naive Bayes and SVM, to develop a
Mobile SMS spam filtering for Nepali text [5].

Dangol and Timalsina implement various Nepali
language specific features such as filtering stop-words,
word replacements and removal of word suffices using
Nepali language morphology to reduce the number of
dimensions in Vector Space Model [6].

Similarly, Bam and Shahi classify rigid designators in
Nepali text such as proper names, biological species and
temporal expressions into some predefined categories
which plays an important role in different fields such as
Machine translation, Information Extraction, Question
Answering System, etc. [7].

Currently, the number of commercial Nepali text
classification system that categorizes the given
documents into predefined specific categories based on
their content is almost non-existent. This could be
attributed to the fact that a reliable consistency and
accuracy required at a commercial level hasn’t been
achieved because of the complexity of the Nepali
language and also a lack of linguistic resources in
Nepali such as a lack of generic stemmer, an accurate
POS (Part-Of-Speech) tagger, stop-word filter, etc.

The Nepali stemmer model developed by Bal and
Shrestha [8] is used for the purpose of this research.

2. Methodology

2.1 Data Distribution

A new Nepali corpus was built by collecting news
documents from various popular Nepali news sites
using a web crawler! based on Scrapy?, a popular
framework for extracting data from websites.

Table 1: Data distribution

Category No. of Documents
automobiles 283
finance 837
crime 491
employment 206
entertainment 2068
health 1021
literature 404
politics 2879
society 711
sports 2052
technology 1221
tourism 772
others 488

A total of 13433 documents of different categories were
collected from news portals such as Ratopati, Setopati,
Onlinekhabar, Nepalipatra, etc. The collected dataset
was further filtered and manual categorization was done
to introduce more categories. The articles which didn’t
fall distinctly under any pre-specified category were kept

Uhttps://github.com/kad4/crawler
Zhttps://github.com/scrapy/scrapy

318

Proceedings of IOE Graduate Conference, 2016

under the *other’ category during the feature extraction
phase in order to improve accuracy of the model. This
category was later excluded during the classification
stage. The diverse nature of the collected data is shown
in Table 1. Finally, the filtered articles in their respective
categories were used in the training and validation of the
model.

2.2 Stemmer

A stemmer tailored for Nepali texts was used to
tokenize the words in the dataset and strip them off of
suffixes. These tokens were then subsequently passed to
the feature extractors. Example:

gu fshr i I TeN5e, HTTHT TRl TAATIRUI/FIF HTh
Y TATT FRGTAT Tlell ATforer T ATelR T, |

Text

¥

Stemmer

v

Tokens

Figure 1: Use of stemmer

2.3 TF-IDF Feature Extractor

The TF-IDF feature extractor works on the basis of the
token frequencies it is fed. The algorithm with which
it was implemented alongside the SVM classifier is as
follows:

1. Preprocess dataset to obtain IDF for top 1000
stems

2. Tokenize and stem given text

3. Compute tf of stems
preprocessing

4. Obtain a tf-idf vector representation of text by
multiplying corresponding tf and idf

obtained during

2.4 Word2Vec Feature Extractor

The word2vec implementation used in this research uses
a single hidden layer neural network having 300

neurons. The number of neurons in the input and the
output layer is the number of tokens obtained after
filtering out tokens having frequency less than 5 in the
whole corpus. Following a typical skip-gram model, the
word tokens are fed into the input neurons and for each
word token, the corresponding set of words within a
fixed window of size 10 that appear alongside the word
tokens are fed to the output neurons. Tokens with a
frequency of less than 5 are ignored. The negative
sampling size is also kept at 5. Based on these two
inputs, the hidden layer creates a matrix that keeps the
information of the context of the words within the fixed
window size.

1. Train Neural Network for word2vec using skip-
gram model with negative sampling

2. Tokenize and stem given text

Obtain the word vectors for individual words

4. Average the word vectors to obtain the vector
representation for text

(98]

2.5 SVM Classifier

The matrix acquired from the feature extractor is finally
used by the SVM classifier. It associates the matrix
with the data label, or category which the text was from,
and finally a trained classifier is achieved. This trained
classifier is later used for predicting the category of
unknown texts. Algorithm for training the classifier:

1. Obtain a list of labeled documents to be used for
training

2. Perform feature extraction on each document to
obtain a feature matrix

3. Compute the corresponding output matrix using
document label

4. Use the feature matrix and output matrix to train
the SVM

5. Perform hyperparameter optimization

Algorithm for text categorization:
1. Perform feature extraction to obtain a feature
vector

2. Feed corresponding vector into the trained SVM

The flowchart of the overall system can be seen in figures
2 and 3.

Improving Nepali Document Classification by Neural Network

Training Data Data labels
4 4
Feature »| SVM Classifier
Extractor
v

Trained Classifier

Figure 2: Training of classifier

Tokens = Trained Classifier —p Category

Figure 3: Category prediction using trained classifier

3. Evaluation

3.1 Optimization of Regularization Parameter
(C)

The performance of the classification algorithm, SVM,
depends on its regularization parameter referred to as
‘C’. In order to automatically calculate the optimal value
of ‘C’ in each experiment cases, Hyperopt has been
integrated into the training model. Equation 1 is the
cost function used by hyperopt to calculate C. Over the
course of 10 experiment cases, hyperopt assigns a value
for C and calculates the corresponding accuracy of each
cases. The value of C that corresponds with the highest
accuracy is used as the Regularization parameter C by
SVM.

ey

loss = 1 —accuracy

0.88
0.86
0.84
0.82

0.8
0.78
0.76
0.74
0.72

0.7
0.68

0.853267666

e

0.791165989 === Accuracy

Precision
=== Recall

=#=T-Score

1 2

9 10

Figure 4: Hyper parameter optimization with hyperopt

3.2 Experiment procedure

Each experiment consists of 10 sub-experiments which
the hyperopt uses to obtain the optimal value for the
regularization parameter, C. The experiments consisted
of 5 fold cross validation in which test data size of 33.33
per cent of the total was used.

3.3 Observation using TF-IDF

The experiments have been first done on a model which
uses TF-IDF method as its feature extractor. In its
bare-bone form, TF-IDF uses all stems in the
vocabulary for feature extraction. For optimum results,
the model uses the 1000 most frequent stems for feature
extraction. Because of this sheer number of stems fed
into the SVM, it has a high dimensionality. Figure 5
shows the variation of accuracy, precision, recall and
F-Score over 5 experiments. The fluctuation can be
attributed to the training data used and the optimum
value of ‘C’ calculated by hyperopt during each
experiment.

Expirement 1 Expirement 2 Expirement 3 Expirement 4 Expirement 5

0.88

0.86

m Accuracy
Precision
m Recall

mF-Score

0.74

Figure 5: Performance values obtained using TF-IDF

3.4 Observation Latent Semantic

Indexing

using

Dangol’s model [6] uses cosine smilarity with TF-IDF
for text classification and applies Latent Semantic
Indexing (LSI) for dimensionality reduction. It uses
other language specific features such as stopwords-filter,
suffix-stripping, etc. to reduce the number of
dimensions further. Applying feature reduction
techniques on the model helps to improve its efficiency
in regards to the time and storage required to train it
along with its performance measure.

As a context-counting method, LSI is much more
sensitive to the parameter choices [9]. Due to this, it has

320

Proceedings of IOE Graduate Conference, 2016

the tendency to produce much less desirable result when
the parameter value is unsuitable. Even though
impressive results were obtained using
language-specific approaches such as stemmers,
stop-word filters, etc. they rely heavily on in-depth
knowledge of the dataset, language-specific semantics
and performance tuning.

On the other hand, context-predicting method such as
word2vec with the help of neural networks tend to be
generally less sensitive to the parameter choices [9].
Given any dataset, they can churn out relatively better
results when compared to the context-counting methods.
The system model employed in this research uses
word2vec as the feature extractor to specifically exploit
this advantage of the neural networks in text
classification.

3.5 Observation using word2vec

Expirement 1 Expirement 2 Expirement 3 Expirement 4 Expirement 5

| Accuracy
Precision
u Recall

mF-Score

0.74

Figure 6: Performance values obtained using word2vec

By being fundamentally different to LSI in its approach,
word2vec improves the dimensionality reduction in the
training model even more. This saves a large amount
of stem overhead and processing time. Figure 6 shows
the variation of accuracy, precision, recall and f-score
over 5 experiments. The rise and fall of the values can
be attributed to the dataset and the optimum value of ‘C’
calculated by hyperopt during each experiment.

3.6 Comparison of

models

performance across

Table 2 shows the mean performance values that were
obtained from all three models. Figure 7 is a graphical
representation of the table that shows the variation of the
performance measures. It indicates that the model with

word2vec implementation has the highest Fscore value,
and hence, the best overall performance.

Table 2: Mean performance values comparison
obtained from different methods

Measures TF-IDF LSI word2vec
Accuracy | 0.854045276 | 0.937694 | 0.863845162
Precision | 0.809654627 | 0.795888 | 0.831501748
Recall 0.779189265 | 0.781929 | 0.792444839
F-Score | 0.792013304 | 0.785624 | 0.808097445

The first model features a simplistic approach
containing only the TF-IDF feature extractor along with
SVM. The second model uses the cosine similarity
method along with TF-IDF and LSI for feature
extraction. The third model employs the same
classification algorithm, SVM, but uses a neural
network-based feature extraction method word2vec.

As figure 7 suggests, the mean accuracy of the 3 models
are 85.4 per cent, 93.7 per cent and 86.4 per cent while
their mean F-score are 79.2 per cent, 78.6 per cent and
80.8 per cent respectively.

Recall

0.95
0.93
0.91
0.89
0.87
0.85
0.83
0.81
0.79
0.77
0.75

B TE-IDF
mLSI

word2vec

Accuracy Precision F-Score

Figure 7: Performance comparison with reference

The measure of the classifier’s accuracy doesn’t always
convey the efficiency of the model’s performance
satisfactorily. It is easily skewed by the unevenness of
the data distribution among the categories. However, a
better F-score which is the harmonic mean of precision
and recall of the model is indicative of the fact that the
model is more precise and has a complete prediction
ability. Figure 7 shows that the SVM model with
word2vec has a better precision and recall over the
model with TF-IDF only by 2.18 per cent 1.33 per cent
respectively. Similarly, the model has a better precision
and recall of 3.56 per cent and 1.05 per cent respectively

321

Improving Nepali Document Classification by Neural Network

over the model with LSI. This results in the F-score of
the word2vec model being superior to the TF-IDF only
method by 1.6 per cent and the LSI method by 2.2 per
cent. The proposed model with word2vec lags behind
the LSI model only in terms of accuracy, but has a
higher overall precision and recall, leading to a higher
F-score.

4. Conclusion

The lack of research works and the complexity of
Nepali as a language made it difficult to find reliable
linguistic resources that made our task tedious. The
nonexistence of a standard Nepali corpus led us to
create our own corpus by crawling various Nepali news
sites. However, after the completion of the classification
model, there were encouraging results that neural
network, particularly word2vec, brought to automatic
Nepali document classification.

In this paper, parameters such as accuracy, precision,
F-score and recall have been used to evaluate the
efficiency of all the models. The SVM model with
TF-IDF as feature extraction had no integrated
dimensionality reduction feauture. The next model uses
cosine similarity for text classification, TF-IDF for
feature extraction and also adds LSI for dimensionality
reduction. However, the third model with SVM and
word2vec outperforms each of them in terms of F-score
by 1.6 per cent and 2.2 percent respectively. The
training model is also greatly simplified by employing a
neural network for learning. It is also less sensitive
external factors and parameters which helped to
maintain a much consistent results of document

categorization over all the experiments.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

References

T Mikolov and J Dean. Distributed representations of
words and phrases and their compositionality. Advances
in neural information processing systems, 2013.

Radim Rehtifek and Petr Sojka. Software Framework for
Topic Modelling with Large Corpora. In Proceedings of
the LREC 2010 Workshop on New Challenges for NLP
Frameworks, pages 45-50, Valletta, Malta, May 2010.
ELRA. http://is.muni.cz/publication/
884893/en.

Thorsten Joachims. Text categorization with support
vector machines: Learning with many relevant features.
Springer, 1998.

James Bergstra, Daniel Yamins, and David D Cox.
Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision
architectures. ICML (1), 28:115-123, 2013.

Tej Bahadur Shahi and Abhimanu Yadav. Mobile
sms spam filtering for nepali text using naive bayesian
and support vector machine. International Journal of
Intelligence Science, 4(01):24, 2013.

Dinesh Dangol and Arun K. Timalsina. Effect of nepali
language features on nepali news classification using
vector space model. 2013.

Surya Bahadur Bam and Tej Bahadur Shahi. Named
entity recognition for nepali text using support vector
machines. Intelligent Information Management, 2014,
2014.

Bal Krishna Bal and Prajol Shrestha. A morphological
analyzer and a stemmer for nepali. PAN Localization,
Working Papers, 2007:324-31, 2004.

Marco Baroni, Georgiana Dinu, and Germéan Kruszewski.
Don’t count, predict! a systematic comparison of context-
counting vs. context-predicting semantic vectors. In ACL
(1), pages 238-247, 2014.

322

http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

	Introduction
	Related Works
	Methodology
	Data Distribution
	Stemmer
	TF-IDF Feature Extractor
	Word2Vec Feature Extractor
	SVM Classifier

	Evaluation
	Optimization of Regularization Parameter (C)
	Experiment procedure
	Observation using TF-IDF
	Observation using Latent Semantic Indexing
	Observation using word2vec
	Comparison of performance across models

	Conclusion
	References

