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Abstract
Kathmandu Valley is one of the rapidly urbanizing cities in Nepal, which registers the highest incidence of road traffic crashes
compared to other regions in the country. The current paper aims to demonstrate the applicability of Geographic Information System
(GIS) oriented spatial analysis techniques to characterize the spatial patterns of the crash hotspots in the Valley. Within this study, a
fusion of spatial autocorrelation (Global Moran’s I Index), Getis-Ord Gi* statistic and Kernel Density Estimation (KDE) methods
were applied to analyze the three years of crash data (2019-2021) on aggregate basis. A positive value (0.11) of Moran’s I Index
indicated that the crashes were clustered spatially with high significance. The Getis-Ord Gi* measure identified the highly significant
hotspot segments along the Valley roads at 99 % confidence level. The KDE visualization corroborated the hotspot links generated
by the Getis-Ord Gi* statistics. The hotpots were further ranked based on weightages relative to severity level. The results showed
that the hotspots are concentrated along Ring Road, Tribhuwan Highway, Araniko Highway and feeder roads. The findings of this
study will serve useful evidence for traffic safety management agencies to prioritize these specific locations and implement targeted
interventions to enhance safety of these road segments.
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1. Introduction

1.1 Background

Road crashes are first and foremost the preeminent consensus
of economies worldwide, driven by the rising number of
vehicles and the demand for efficient transportation. The road
crashes result in fatalities and injuries affecting 1.19 million
and 20-50 million people each year respectively, leading to
great socio-economic ordeals at national, community and
individual levels. The safety risks are three times higher in
low-income countries than the high-income countries where
there are 9 deaths per 100,000 people on average [1].

Nepal, like other low-income countries, grapples with traffic
safety issues on highways and urban roads with a record of
2883 casualties, 7282 serious injuries, and 25,722 minor
injuries in fiscal year 2020/21. Especially, Kathmandu Valley as
the primary economic hub in Nepal, is posed with significant
crash risks due to its immense population of 2.88 million
residents [2] and 0.44 million registered automobiles [3].
According to traffic police records, the Valley witnesses about
10,000 crashes every year causing more than 180 deaths. The
elevated crash incidences can be attributed to a number of
factors, including an increase in the number of vehicles,
insufficient infrastructure capacity, disregarded safety
measures, neglected traffic segregation, haphazard roadside
parking and weak law enforcement [4]. Although several
safety initiatives have been put in place to monitor and reduce
the traffic crashes, the problem continues to grow due to
insufficient investigation of root causes and a lack of
prioritization strategy for the hot spots.

In the context of Kathmandu Valley, the definition of crash
hotspots remains elusive due to absence of standardized
framework in Nepal. Consequently, local researchers [5, 6] rely
upon traditional statistical analysis, site observation and
stakeholder interaction techniques to analyze the trends of
hotspots just as a general estimate. However, these methods
have limited ability to capture all the complex factors
contributing to frequencies and severity of crashes at high-risk
road locations. The primary constraint lies in the availability
of data relevant to crash, road infrastructure and environment,
which hinders comprehensive understanding of the factors.
Hence, longitudinal studies are desired to identify the patterns
of hotspots, their severity and causative factors utilizing more
rigorous techniques. The present study endeavors to address
this gap by employing GIS based spatial analysis techniques in
order to highlight the significant hotspot locations and their
patterns across Valley’s Road network. Furthermore, the study
seeks to rank the identified hotspots based on severity index,
and outline probable causes to assist policymakers in
acknowledging the potential safety measures.

2. Literature Review

GIS aided spatial data analysis and mapping techniques have
been widely applied to combine crash data with spatially
referenced variables in order to identify high-risk locations
[7, 8, 9, 10]. The spatial analysis typically involves identifying
spatial dependency between clusters of locations that share
comparable attribute values [11]. Geospatial tools such as
Moran’s I Index (Global and Local), Getis-Ord Gi* statistics,
Kernel Density Estimation (KDE), nearest neighbor distance,
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and K-mean clustering have been extensively employed in
crash hotspots determination [11, 12]. The above methods are
sequentially devised to account the shortcomings of previous
methods. For example the nearest neighborhood method was
replaced by K-function to delineate the clustering extent
across wider range of scale. The nearest neighborhood
function and K-function merely look at the general tendency
of data, so KDE method was devised to localize the clusters.
The KDE method involves constructing a smooth density
surface within two-dimensional space to estimate aggregate
occurrences within search bandwidth. Essentially, the surface
value is largest at the point location (the center) and gently
decreases to zero along the circle’s radius (bandwidth) [13, 14].
The standard KDE method has specific advantages in
visualization of location and density of crash points as it has
effect of dispersing the risk of crashes. One unavoidable flaw
is that it is unable to examine the statistical significance of the
crash hotspots [14].

Whereas, the spatial autocorrelation viz. Moran’s I Index and
Getis-Ord Gi* statistics categorize the spatial patterns into
three kinds; namely clustering, random and dispersive, the
statistical significance of which can be evaluated using a
z-score, a feature not present in KDE. The Global Moran’s I
offers several advantages, including its higher level of general
stability, testability, adaptability of conditional distribution,
and applicability in crash analysis[15]. It specifically evaluates
the overall spatial arrangement of a variable without providing
statistical inference for identifying particular clusters or
hotspots. By complementing this global indicator with local
indicators of spatial autocorrelation like local Moran’s I and
Getis-Ord Gi* statistics, the pockets of hotspots become more
apparent. A plus point of the Gi* statistics is their ability to
neutralize the spatial distribution of data points, thus
facilitating the formulation of hypotheses without the risk of
data point patterns biasing the outcomes [16].

The KDE, Moran’s I Index and Getis-Ord Gi* statistics have
been employed by several researchers to highlight the
significant crash hotspots at macroscopic (e.g. state and
geographic unit) and microscopic (e.g. road sections and
intersections) scales [7, 10, 11, 12, 13, 17, 18, 19].
Prasannakumar et al. [7] examined the spatial distribution of
crashes in Thiruvananthapuram city by dividing data into
spatial parameters of educational and religious places. Wang
et al. [10] analyzed the clustering of six collision types and
three severity levels of crashes with optimized hotspot
analysis method for Liangshan Yi Autonomous Prefecture,
China. The results show that motor vehicle crashes dominate
the hotspots in core and outer regions. The study further
added that unreasonable threshold distances are culminated
when only aggregate dataset is considered. This can
jeopardize the significance of cluster identification, also
known as the boundary effect. Nanzeen et al. [12] applied the
KDE, Getis-Ord Gi* and crash severity map to identify the risky
locations in the Indian Reservations. The study suggested that
other factors such as traffic volume, speed, crash time and
weather should be comprehended to accurately delineate the
crash severity risks.

Similarly, Alam et al. [17] imposed these techniques in
highways of Ohio and highlighted the importance of temporal
trends to uncover the true crash patterns. Harirforoush et al.

[11] combined the results of KDE representing crash density
with Moran’s I to identify significant clusters of traffic crashes
in the Sherbrooke region across distinct seasons. The results
indicate a notable concentration of traffic crash clusters in the
city center and along major roadways during the summer and
autumn seasons. Troung et al. [13] investigated the trends of
pedestrian-vehicle crashes in Adelaide Metropolitan area
using crash data spanning 13 years, and found that majority of
pedestrian-vehicle crashes occur at intersection and more
severe crashes at mid-blocks. Hammas et al. [18] utilized the
KDE and Getis-Ord Gi* to map the hotspots in Medina on
annual basis, and made deliberations that these increase
proportionately with casual variables like high-speeds, road
width and population density. Some extra variables were
considered by Afolayan et al. [19] while investigating the
traffic crash hotspots on Nigerian highway. The study
presented the association of hotspot occurrences with traffic
exposure and geometric features.

On the part of visualization, Manepalli et al. [20] compared
the KDE and Getis-Ord Gi* (d) statistics and concluded that
identical hotspots are outlined by both methods. In contrast,
the Kuo [21] and Plug et al. [22] observed KDE maps to possess
greater visual significance in comparison to those produced
using Gi* z-scores.

3. Study Area

The designated study area is the Kathmandu Valley, a
bowl-shaped portion of Bagmati watershed that covers an
area of 671.32 sq.km in the central hilly region of Nepal. The
study area comprises of 4 local levels (Bhaktapur,
Changunarayan, Madhyapur Thimi and Suryabinayak) of
Bhaktapur district, 11 local levels (Budhanilkantha,
Chandragiri, Dakshinkali, Gokarneshwor, Kageshwori
Manahora, Kathmandu, Kirtipur, Nagarjun, Shankharapur,
Tarakeshwor and Tokha) of Kathmandu district and 3 local
levels (Godawari, Lalitpur and Mahalaxmi) of Lalitpur district.

Figure 1: Location Map of Study Area with Road Network and
Crash Distribution

As the most populated city in Nepal, the Valley is afflicted by
the detrimental effects of haphazard urban expansion. The
erratic development has led to an increase in vehicle usage
without a corresponding rise in road infrastructures. Most
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of the highways, feeder and urban roads of the Valley suffer
from daily congestion and traffic crashes in relation to heavy
traffic flow. Moreover, the Valley roads are reported to have
the highest incidences of traffic crashes than elsewhere in the
country.

4. Methodology

The present research employed an integration of three spatial
analysis methods; Global Moran’s I Index, Getis-Ord Gi*
statistics, and KDE to evaluate the statistically significant
hotspots for aggregate crashes, and assigned the ranking of
the identified hotspots based on a severity index. The
summary of the research methodology is explained in the
sub-sections beneath:

4.1 Data Collection

In the context of this study, the recent traffic crash records
from 2019 to 2021 was secured from Nepal Police
Headquarters, Naxal in electronic form. The Survey
Department provided the road network and administrative
dataset in GIS shape file format. The road dataset included
attribute information such as ID, link name, start and end of
section, road class (municipal/district/feeder/national
highway), length and remarks. The overall quality of the road
network was ascertained by comparing it with a separate
dataset downloaded from OpenStreetMap (OSM) Project
using the Geofabrik’s server. Additional data on population
size were downloaded from census 2021 portal of National
Statistics Office.

4.2 Data Preparation and Processing

The crash records, initially in Word format and Nepalese
language, was converted into CSV format using a Python
program. The CSV file lacked precise coordinates for each
crash points. To address this, each record was manually
reviewed and distances measured from traffic police station to
pinpoint corresponding crash locations in Google Earth. The
fields of CSV dataset were formatted to include a unique key
(I.D.), date, time, X and Y coordinates, severity level, causes,
vehicle type and other variables. The co-ordinates were
imported to ArcMap 10.8 to create a layer of point features
with attribute information. Road network was added to
geo-database and the crash points were adjusted to intersect
with nearest edge of road network with snap tool. After
removal of outlier points, 23,278 (79.55%) crash records were
available for the analysis.

4.3 Spatial Auto correlation

Global Moran’s I is one of the earliest markers of spatial auto
correlation. It is used to examine whether the crash locations
and attributes exhibit any regularity, i.e. whether they are
spatially clustered, dispersed or random [7]. It is computed
using equation (1):

E I = n∑n
i=1

∑n
i=1 wi j

×
∑n

i=1

∑n
i=1 wi j (xi −X )(x j −X )∑n

i=1(xi −X )2 (1)

Where, n is total number of cases, wi j is spatial weight between
point i and j , xi is crash count at point i , and X is global mean
value [17]. The Z-score to test the null hypothesis of complete
randomness of the features is given by equation (2)

Z = (I −E [I ])p
V [I ]

(2)

Where expected value and variance is represented as:

E [I ] = −1

(n −1)
(3)

and

V [I ] = E [I 2]− (E [I ])2 (4)

The "Distance Band from Neighbor Count" geo-processing
function generated an average distance to be used as the
starting distance, and the increment for the spatial auto
correlation analysis. The spatial pattern analysis tool of
ArcGIS was run to generate the Moran’s I, z-score and p-value
using the average distance. The Moran’s I value close to -1
denotes dispersed patterns, while the value close to +1
denotes clustered patterns in the analysis regions. The
significance of the spatial auto correlation increases with the
absolute magnitude of Moran’s I [7].

The average distance was also input for the Incremental Spatial
Auto correlation function that gave the threshold distance as
the analysis scale. The peak distance (distance at which most of
the crashes tend to cluster) respective to the maximum z-score
and minimum number of neighbors required was selected.

4.4 Getis-Ord Gi* Statistics

The Gi*statistics analyzes each feature in the dataset within
the context of neighboring features [16]. It classifies a feature
as statistically significant hot spot when both the feature and
its neighbors have high value [7, 12, 13]. The statistic is derived
from equation (5):

G∗
i (d) =

∑
j
(
Wi j x j −W̄i j x̄

)
s∗

√
2

(
nS∗

1i−W̄i j

n−1

) (5)

Where, S∗ is the sum of squared weights, s∗ is the standard
deviation of the data, Wi j is a spatial weight between features
i and j , W ∗ i j is the sum of weights and n is equal to total
number of features [19], and:

s =
√∑n

j=1 x j

n
− x̄2 (6)

x̄ =
∑n

j=1 x j

n
(7)

To perform this, the crash data was integrated with road
network layer using a spatial join tool. A new joint count field
was provided that quantified the number of crashes per
segment. The Hot Spot Analysis function (Getis-Ord Gi*) from
the Spatial Statistics toolbox of Arc Map 10.8 was fed with this
field as the input for hot spot computations. Both the fixed
distance band method and inverse distance method were
applied for the conceptualization of spatial relationships. A
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threshold distance of 100 meters was found most suitable for
the fixed distance strategy, whilst, the inverse distance
method, regardless of threshold input or not, showed better
performance than the fixed distance method. So, only the
results of the inverse distance method are included in this
paper.

The G∗
i (d) statistics returned an output feature class

containing z-score (Standard Deviations), p-value, and a bin
field for confidence level (Gi_Bin) for each feature within the
input feature class. Features falling within the ±3 bins
accurately represent statistical significance with a confidence
level of 99%; whereas those within the ±2 bins indicate a
confidence level of 95%, and those within the ±1 bins indicate
a confidence level of 90%. A high z-score and small p-value of
a feature suggest a spatial clustering of high values, whereas a
low negative z-score and small p-value indicate a spatial
clustering of low values [23].

4.5 Kernel Density Estimation (KDE)

KDE technique was applied to estimate the density of crashes
within a given bandwidth (search radius) surrounding each
point across study area. It determines the magnitude per unit
area from each hot spot feature; in other word the spread of
risks around crash cluster. The mathematical form of the
intensity at each location is show in equation (8):

f (x, y) = 1

nh2

n∑
i=1

k

(
di

h

)
(8)

Where, f (x, y) is the density measured at location (x, y), h is
the radius of the circle (bandwidth or kernel size), K () is the
kernel which is a function of the bandwidth and distance, and
di is the distance between point (x, y) and ith location [24].

With the help of the KDE calculator feature offered by the
spatial analyst tool, kernel density hot spots were detected
using the crash point layer and populated field as none. The
primary factor to consider in determining the appropriate
density level is the bandwidth and cell size. Through hit and
trial method, a bandwidth of 250 m and a cell size of 10 m
were found suitable and consistent.

4.6 Identification and Ranking of Hot spots

The statistically significant crash hot spots in the Valley were
ascertained by overlapping the high-risk maps created by KDE
and Getis-Ord Gi* (d) statistics. Further, severity weighted
technique was utilized to pinpoint the hot spots and rank the
top ten sites. The weights for each severity level were
determined in proportionality to associated crash costs as
suggested by Highway Safety Manual (HSM). The crash costs
were excerpted from Rizal et al. [25], and the weights were
calculated by dividing the crash costs corresponding to
different levels of severity by the Property Damage Only (PDO)
costs. The derived weights are; 353 for death (A), 8 for major
injury (B), 2 for minor injury (C) and 1 for PDO crashes (D). To
assign severity index (SI) to each segment, the equation (9)
was used:

SI = 353A+8B +2C +D (9)

5. Results and Discussions

For the spatial analysis, the definition of hotspot is taken as a
collection of adjacent spatial units characterized by a
significant occurrence of crashes. The primary spatial unit
considered in this study was the original length of road
segments, chosen to account for geometric and
environmental changes. The analysis was oriented towards
finding the spatial trends in both the aggregate crash data.

5.1 Descriptive Analysis

Figure 2 shows a similarity in the yearly trend of total, death,
major injury, minor injury and PDO crashes from 2019-2021.
The peak crashes for all types occurred in 2019, decreased in
2020 and again hiked in 2021. The observed reduction in
crashes is due to the nationwide lockdown and vehicle travel
restrictions imposed during the outbreak of COVID-19
pandemic.

Figure 2: Yearly Distribution of Crashes (2019-2021)

Figure 3: Collision Types and Resulting Severity

Figure 3 reveals that head on, rear end/side, overturned
vehicle and hit pedestrian (crossing or walking) types of
collision contribute to deaths and major injuries. The impact
of collisions is particularly high when the vehicular speed is
considerable as illustrated by Figure 4. Driver carelessness and
driving under the influence of alcohol are also held
accountable for the seriousness of the crash events.

The crash density pattern of the Valley exhibits a significant
concentration towards central urban area in excess of 900
crash counts (Figure 5). The core region comprises of
Kathmandu Metropolitan City, Lalitpur Metropolitan City,
Madhyapur Thimi Municipality and Bhaktapur Municipality.
These areas are distinguished by elevated levels of population

329



Spatial Analysis of Road Traffic Crash Hotspots in Kathmandu Valley, Nepal

Figure 4: Main Reasons of Crashes and Resulting Severity

density (over 5500 heads/sq.km), socio-economic
engagement, extensive road infrastructure, and extreme traffic
flows.

Figure 5: Population Density vs. Crash Frequency

5.2 Spatial Autocorrelation Analysis

The spatial autocorrelation analysis of aggregate dataset
indicates a significant clustering of high-value crashes as seen
by Moran’s Index of 0.11, a z-score of 8.29, and a p-value of
0.00 at a 99% confidence interval (Figure 6). This provides a
sufficient basis for the rejection of the null hypothesis,
concluding that the dataset manifests a discernible clustering
tendency rather than a purely random dispersion.

The result of incremental spatial autocorrelation for total
crashes varies on a scale of 50 m to 400 m (Figure 7) with one
peak at 351 m (z-score of 67.27). The peak distance led to
overestimation of hotspot features; to address this problem, a
reduced threshold distance was applied in the hotspot
analysis.

Figure 6: Spatial Auto correlation Results

Figure 7: Incremental Spatial Auto correlation Results

5.3 Getis-Ord Gi* Analysis

The Getis-Ord Gi* statistics was computed to identify road
sections that are significantly more hazardous than adjacent
features. The GiZ-score ranged from -0.60 to 19.76 and GiP
value ranged from 0 to 0.999976. The positive GiZ-score and
small GiP value indicates statistically significant clustering of
high values, while the negative GiZ-score and high GiP values
means intense clustering of low values. The statistics
categorized 302 segments as hotspots in +3 bins (red color), 89
segments as hotspots in +2 bins (orange color) and 95
segments as hotspots in +1 bins (90% yellow color) and rest of
the insignificant segments in 0 bin (grey color). Figure 8
suggests that the spatial hotspots established with 99%
confidence (p < 0.01) cover a substantial portion of the spatial
units, whereas the prevalence of orange and yellow segments
are less conspicuous.

The highly significant hotspots at 99% confidence are located
as discontinuous clusters along Ring Road, Araniko Highway,
Tribhuwan Highway, Tripureshwor – Ring Road, Thapathali –
Ekantakuna, Samakhusi – Tokha – Gurje, Balkhu – Chovar,
Satdobato – Pulchowki and Satdobato – Dhapakhel road
sections (Figure 8). These hotspots are more persistent where
there is presence of intersections, curves, bridge approaches,
access roads, median barriers, bus stops, roadside objects,
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Figure 8: Getis-Ord Gi* Hotspot Map

pedestrian crossings, fuel stations and other features. These
clusters are closely linked with traffic volume, vehicle speed,
population density, residential developments and
commercial/institutional activities (hospitals, schools,
shopping complex, markets etc.). Additionally, the slope
extremity and sharp bends may contribute to the higher RTC
frequency observed in the eastern Araniko Highway and
western Tribhuwan Highway.

5.4 KDE Mapping

In Figure 9, the results of the estimated kernel density are
displayed in color gradient symbolizing the intensity of
hotspots, ranging from 776.67 points/sq.km to 5,436.69
points/sq.km. White color denotes absence of hot spots,
yellow indicates mild concentration, and finally red color
represents significant concentrations of hotspots. Based on
the visual interpretation of Figure 9, the prevalence of
hotspots is higher on the Ring Road compared to other
highways. On the Ring Road, hot spots are more visible at
intersections, namely Koteshwor, Tinkune, Chabahil,
Sukedhara, Narayan Gopal Chowk, Samkhusi, New Buspark,
Kalanki, Balkhu, Nakhu Dobato, Ekantakuna, Satdobato and
Gwarko areas.

Figure 9: KDE Map for Total Crashes

By overlaying the maps created from Getis-Ord Gi* and KDE
methods, it is evident that similar hotspots are identified by

both the approaches. Though KDE effectively detected spatial
hotspots, it failed to provide insights into the statistical
significance of high or low crash frequencies at various
locations. On the other hand, the Getis-Ord Gi* analysis
revealed some additional hotspots along northern and
southern roads of the Valley, but overgeneralized the results by
marking entire road segments as hotspots irrespective of the
length of segment that actually has a high concentration of
crashes. Nevertheless, this approach precisely delineated the
significant hotspot segments for subsequent ranking purpose.

5.5 Hotspots Ranking

The 287 common hotspots at 99% confidence level which are
characterized by both the Getis-Ord Gi* and KDE methods
were subjected to ranking process using the Equation (9). The
ranking results are shown in Table 1. The top ten hotspots
exhibit high number of deaths and major injury crashes in
comparison to other hotspots identified at 99% confidence. As
a result, these specific locations were assigned with relatively
high weights of severity score, despites the fact that other
locations had high number of crash incidences. It is critical for
transportation agencies to prioritize the prevention of
fatalities and severe injuries at these identified hotspots, due
to their profound effects on people, families, and economic
fabric.

Table 1: Top Ten Significant Hotspots

S.N. Location Crash Count SI Rank
1 Balkhu (TU) 81 2017 1
2 Dhungeadda 191 1862 2
3 Kaushaltar Chowk 123 1751 3
4 Chardobato Chowk 82 1723 4
5 Chundevi Chowk 74 1705 5
6 New Buspark 79 1634 6
7 Srijananagar Chowk 48 1561 7
8 Thasikhel Chowk 84 1331 8
9 Chabahil Chowk 29 1305 9

10 Nagdhunga 85 1203 10

6. Conclusions

This study introduced a novel hotspot analysis technique
based on GIS spatial tools to facilitate the effective
visualization of high crash risk areas and possible causes in
the Kathmandu Valley. The study employed three methods;
Global Moran’s I, Getis-Ord Gi* and KDE to explore the
geographical patterns of the highly significant hotspots. Based
on the findings, the following conclusions were drawn:

• The positive Moran’s I statistic, high z-score and low p value
indicate that the patterns of hotspots are clustered in nature.

• The Getis-Ord Gi* and KDE techniques highlight similar
locations of hotspots, and hence, their collective potential
can be utilized to quickly visualize the statistically
significant hotspots.

• The concentration of crash hotspots is significant along Ring
Road, Araniko Highway, Tribhuwan Highway, Tripureshwor-
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Ring Road, Thapathali-Ekantakuna Road and other main
urban roads.

• Hotspots with the higher incidence of crashes do not
necessarily correlate with higher severity score, and hence,
they do not occupy higher position in ranking.

• Top ten hotspot sections as identified by the weighted
severity index underscores the need for immediate
mitigative action due to high incidences of deaths and
major injuries associated with these sites.

• The ranked locations will provide a a strategic pathway to
the native transportation management authorities to focus
their investigative endeavors on the risk determinants at
these locations, and ensuring optimum allocation of their
constrained financial resources to reduce both the frequency
of crashes and seriousness of impacts.

Future Research

The present paper is limited to the study of spatial patterns of
the crashes and their severity, and neglects the correlation with
other factors like land use, vehicle ownership, road geometry
(such as length, sight distance and gradient), weather, time of
crash etc. The limitation warrants future research to be focused
around integration of these spatial and temporal variables in
order to accurately assess the inter dependency of hotspot
occurrences on such contributing factors.
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