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Abstract
Over time, considerable efforts have been committed to enhancing the prediction of Optimum Bitumen Content in Marshall Mix
Design to reduce the time and effort required in the conventional Marshall mix design procedure, employing a wide range of factors.
Prediction of Optimum Bitumen content continues to be a difficult task due to interactions among numerous variables that are
challenging to gather comprehensively. The present study explores the utilization of Multi Linear Regression (MLR) for predicting
Optimum Bitumen Content (OBC) in Marshall Mix Design, crucial for optimizing asphalt pavement construction. After the collection
of 148 Marshall mix design forms from various projects, the uniqueness of the data is maintained initially; then an outlier test is
conducted for the output set, and 141 sets of data were taken for the descriptive statistics analysis to identify the mean, median,
mode, and standard deviation of the dataset. After that, a multiple linear regression (MLR) model was developed using Microsoft
Excel. For the developed MLR model, the training R-value and R-squared value are 0.849 and 0.7209, respectively, indicating
moderate predictive capacity and a strong correlation between independent and dependent variables. Validation on an independent
dataset confirms the model’s reliability, with an R-value and R-squared value of 0.6734 and 0.4535, respectively and,Chi-Square
test suggested that there is no difference between the Actual OBC and Predicted OBC values. ANOVA analysis underscores
significant relationships between independent variables and OBC, supported by an F-value surpassing critical thresholds. Sensitivity
analysis emphasizes the influential role of aggregate gradations in OBC prediction. By integrating MLR, this research introduces
an innovative approach to streamline asphalt mix design processes, offering cost-effective and durable solutions for pavement
construction. The findings advocate for widespread adoption of MLR in industry practices to enhance efficiency and resource
optimization.

Keywords
Optimum Bitumen Content, Multi Linear Regression, Marshall Mix Design, Sensitivity Analysis

1. Introduction

1.1 Background

Asphalt concrete pavements find extensive application in
advanced highways, runways, and parking lots, where the cost
of bitumen plays a significant role in project economics.
Knowledge of the optimal binder content is crucial for
achieving higher Marshall stability values, ensuring superior
performance of asphalt concrete (AC) paved surfaces [1].
Asphalt mix design aims to accurately estimate the ideal
aggregate and bitumen characteristics within the mix to meet
this objective [2]. Typically, this process involves conducting
laboratory tests known as Marshall Mix design to determine
the optimum binder content [3]. Introduced in 1939 by Bruce
Marshall of the Mississippi State Highway Department [4], the
Marshall mix design method remains widely used, especially
in South Asia [5]. In Nepal, it was introduced under the
Standard Specification of Road and Bridge Work (SSRBW) in
2058 BS.

The Marshall test procedure entails preparing at least fifteen
samples for five different asphalt contents, followed by
drawing design curves [6] to estimate the Optimum Bitumen
Content (OBC) that meets specific criteria governed by SSRBW
2073[3]. However, this method requires considerable time for
sample preparation and testing[7], prompting research efforts

to explore alternative approaches for time-saving Marshall
tests. Therefore, this study aims to evaluate the efficacy of
employing Multi Linear Regression (MLR) to accurately and
efficiently predict OBC, thereby enhancing laboratory mix
design processes.

2. Literature Review

Several studies have investigated diverse methodologies and
considered various parameters to forecast the optimum
bitumen content in Marshall Mix Design and Marshall
properties in asphalt mixtures. Typically, aggregates constitute
approximately 95% of the asphalt mix and are deemed the
most crucial element of asphalt concrete[8], thus influencing
the mix’s characteristics primarily reliant on the aggregate
used and its gradation[9].Aggregate properties significantly
impact mix properties and Hot Mix Asphalt (HMA) Aggregate
properties significantly impact mix properties and Hot Mix
Asphalt (HMA) [7].

Saltan et al. and Androjic & Dimter employed the Marshall
mix design method to ascertain the optimum bitumen
content by evaluating mixtures with varying bitumen contents
[10, 11]. Setiawan et al. utilized Multiple Polynomial
Regression (MPR) models to establish relationships between
aggregate gradation, bitumen content, and Marshall
properties [12]. Khuntia et al. employed artificial neural
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networks (ANNs) to predict optimum bitumen content and
Marshall parameters efficiently, minimizing the need for
extensive experimental tests [13]. Moreover, Awan et al.,
Androjić & Marović, and Othman & Abdelwabah explored the
use of ANNs for predicting Marshall properties in asphalt
mixtures [14, 9, 15]. Baldo et al. successfully forecasted
stiffness property of asphalt concretes using machine learning
models, with bitumen content as a crucial variable [16].
Additionally, Baldo et al. demonstrated the application of
ANNs to model Marshall parameters of hot mix asphalts [17].
These methods have paved the way for effective and precise
techniques to anticipate bitumen content in Marshall Mix
Design, employing a range of prediction models like MLR,
ANN, MPR, and others. This has significantly contributed the
progress of asphalt engineering practices.

3. Objectives of the Research

The aim of this study is to construct a multiple linear
regression (MLR) model to forecast the Optimum Bitumen
Content by analyzing the interrelationships among Specific
Gravities of materials, Aggregate Gradations, and Practical
Consideration for Aggregate across four bins (20 Down, 16
Down, 10 Down, and 4.75 Down) of Marshall Mix Design.
Additionally, the research seeks to assess the precision and
reliability of the MLR model.

4. Methodology

4.1 Data Collection and Extraction

This study relies primarily on secondary data obtained from
various sources. A total of 148 data samples were gathered
meticulously from multiple laboratories, including the Quality
Research and Design Center (QRDC) under the Department of
Roads (DOR) Nepal, Visow Lab Kathmandu, Everest Lab
Kathmandu, and Meh Geo Lab Lalitpur. Additionally,
extensive review of theses related to Marshall Mix design at
the university level in Nepal was conducted. Secondary data
were also sourced from documents obtained from project
offices and various construction sites.

The collected data encompassed details such as batching
proportions, gradations details, specific gravity of materials,
mechanical properties, and volumetric properties at optimum
bitumen content. Furthermore, information on mechanical
and volumetric properties at five different bitumen contents
was compiled in a structured format. Each Marshall mix
design was validated for its uniqueness using project names
and contract IDs associated with the respective projects.

4.2 Model Development

Regression analysis is a widely employed technique in
research for examining the relationships between variables
[18].Its popularity stems from the ease of interpretation and
construction of regression models. Various types of regression
models exist, including linear, nonlinear, simple, multiple,
parametric, non parametric, and logistic regression [19]. In
this study, the multiple linear regression (MLR) model is
utilized, represented by the equation:

y =β0 +β1x1 +β2x2 + . . .+βn xn +ε (1)

Where:

y : Dependent variable

x1, x2, . . . , xn : Independent variables

β0,β1,β2, . . . ,βn : Regression coefficients

ε : Residual error

The effectiveness of the models was assessed by calculating
several statistical error metrics. These statistical errors
included for the assessment of the models were Correlation
Coefficient R, Coefficient of Determination R-Square,
Adjusted R-Square, mean absolute error (MAE) and Mean
Absolute percentage Error (MAPE).

4.3 Data Sampling for sensitivity Analysis

An extensive search was made within all the inputs to choose
the most effective variables with the highest impact on the
outputs. In a study involving multiple inputs, sensitivity
analysis can be considered as one of the rational tools to
determine the most important and least important
parameters. Sensitivity analysis helps to ascertain the
sensitivity of the output based on the change in the
corresponding input values or input ranges of values. There
are various methods and tools in order to carry out the
sensitivity analysis for multiple variables as inputs, one of
which is the sensitivity analysis proposed by Chang and Liao
[20]. Based on Chang and Liao, the sensitivity index can be
ascertained with the help of

SI = (O2 −O1)

(I2 − I1)
· I AV G

O AV G
(2)

Where:

I1 = Smallest Input Value

O1 = Output Corresponding to Smallest Input Value

I2 = Largest Input Value

O2 = Output Corresponding to Largest Input Value

I AV G = Average of all non-zero inputs

O AV G = Average of outputs corresponding to

non-zero inputs

5. Data Processing and Descriptive Statistic
of the Dataset

5.1 Data Processing

Initially, a total of 148 Marshall Mix design data points were
collected, as shown in the provided picture. Subsequently,
outlier detection was performed using a 95% confidence level,
resulting in the removal of outliers and leaving 141 Marshall
Mix designs for further analysis.

5.2 Descriptive Statistics of the dataset

Descriptive statistics offer a concise summary of the
characteristics and distribution of values within one or more
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datasets [21], as illustrated in the following Table 1. Classical
descriptive statistics enable analysts to quickly assess the
central tendency and variability of values in datasets.
Common measures of central tendency include the mean,
median, and mode, each representing different typical values
within the data. Measures of dispersion, also known as
variability, encompass the minimum and maximum values,
range, quantiles, and standard deviation,variance,
distribution skewness, and kurtosis [22].

6. Result and Discussion

6.1 Correlation Analysis

In this study, correlation analysis utilizing Pearson’s
correlation coefficient reveals the relationships among various
variables as shown in Table 2, including Specific Gravity of
Aggregate and Bitumen, Percentage Down through Bins, and
Percentage Passing. Strong positive correlations are observed
among the eleven variables of percentage passing, while
moderate positive to no correlations is found between
percentage passing and Specific Gravity of Materials, as well as
Percentage Down in Bins. Furthermore, Percentage Down
through Bins shows a negative correlation with specific gravity
of materials. Consequently, these independent variables
collectively offer valuable insights for predicting the Optimum
Bitumen Content in Marshall Mix Design.

6.2 Multiple Linear Regression and Statistical
Significance

Multiple linear regression model is developed with 75% of
total data set i.e. 106 number of data set (Training Dataset) to
predict the Optimum Bitumen Content with four Percentage
Down through Bins, Five Specific Gravity and Eleven
Aggregate Gradation Percentage Passing independent
variables. The multiple regression equation developed to
predict OBC is shown in Equation 2. Also, Regression Statistics
of MLR to Predict OBC is given in the Table 3.

OBC =−3.4541+0.0010×PD19 +0.0021×PD16

−0.0002×PD13 −0.0005×PD4.75

−0.9050×SG20 +1.8146×SG16

−1.1295×SG10 +1.1655×SG4.75

+0.3884×SGB +0.0374×PP26.50

+0.0245×PP19 −0.0168×PP13.20

+0.0055×PP9.50 +0.0114×PP4.75

−0.0051×PP2.36 −0.0004×PP1.18

+0.0237×PP0.60 −0.0185×PP0.30

+0.0323×PP0.15 −0.0004×PP0.075

Regression statistics shows that the R-squared values for OBC
Prediction model has moderate strength. Also, the Mean
Squared Error (MSE) and Root Mean Squared Error (RMSE)
suggested more significant errors with 2.4169% as lower MAPE
percentage suggests that is close to zero, on average, the
predictions are very close to the actual values, indicating a
high level of precision and reliability in the model’s
predictions [23].

Furthermore, Table 4 shows that the F observed value of
10.976 is greater than the F critical values of 1.695 and 1.50 at a
5% level of significance and at a 10% level of significance
respectively. Hence, the dependent variable Optimum
Bitumen Content is significantly related to the independent
variables at a 5% level of significance.

The equation suggests that larger-sized aggregates lead to
increased voids in the mix, thus requiring more optimum
bitumen content (OBC). Conversely, smaller-sized aggregates
offer greater surface area resulting higher OBC. The
relationship between percentage passing and OBC involves
both positive and negative correlations, which stem from their
strong interdependence. This is largely because a well-graded
aggregate mix is necessary. Additionally, the voids left by
larger aggregates are filled by smaller aggregates during
interlocking in the mix. Specifically, the percentage passing
(PP) from the 0.075 sieve size has a negative relation to OBC.
An increase in dust content limits the penetration of bitumen
in the mix, resulting in a stiffer mix.

6.3 Model Validation

For MLR model testing purposes, 25% of independent dataset
i.e.35 number of mixes was used. Figure 1 shows the
comparison between the tested and predicted values of the
OBC on an independent dataset that was used for evaluation
purposes of the MLR model.

From Figure 2, it can be concluded that the correlation
coefficient between the tested and predicted values of the
OBC on the additional set of samples (35 independent
samples) amounts to a low of 0.4535 compared to the tested
set of samples. Removing 3 mixes from the basic dataset
(rough error) leads to an increase of the correlation coefficient
of 0.57 [15].

Figure 1: Comparison between the tested and predicted
values of the OBC

Furthermore, The Chi-square test is then carried out in order to
test the difference between the Actual OBC and the Predicted
OBC values. The test is presented along with hypothesis testing
and data frequencies are recorded for 0.3% OBC interval.Then,
Hypothesis testing is carried out to perform this test in which
the null hypothesis and the alternative hypothesis are defined.

Null hypothesis (H0): There is no significant difference
between the actual OBC as expected frequencies and
predicted OBC as observed frequencies.
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Table 1: Descriptive Statistics of Input and Output Datasets

Mean Median Mode Standard Error Standard Deviation Minimum Maximum
PD 19 17.08 20 0 1.32 15.68 0.00 51.00
PD 16 12.77 15 0 1.03 12.24 0.00 35.00
PD13 26.73 30 30 0.83 9.80 0.00 65.00
PD 4.75 42.37 43 45 0.58 6.83 15.00 60.00
SG20 2.65 2.655 2.627 0.00 0.04 2.56 2.78
SG16 2.64 2.643 2.627 0.00 0.06 2.26 2.76
SG10 2.64 2.64 2.68 0.01 0.06 2.26 2.76
SG4.75 2.66 2.664 2.686 0.01 0.06 2.32 2.84
SG B 1.03 1.028 1.028 0.00 0.01 1.01 1.09
PP 26.50 99.82 100 100 0.07 0.84 91.50 100.00
PP 19 97.00 100 100 0.43 5.08 75.30 100.00
PP 13.20 80.84 78.69 91.1 0.82 9.72 60.80 99.81
PP 9.50 69.60 70.9 81.97 1.11 13.24 39.10 88.83
PP 4.75 48.57 46.8 59.68 0.73 8.63 35.10 69.70
PP 2.36 37.35 34.79 45.11 0.54 6.46 24.10 54.10
PP 1.18 25.50 23.62 23.62 0.69 8.23 8.60 41.79
PP 0.60 21.52 19.94 19.1 0.51 6.03 8.60 34.90
PP 0.30 14.33 13.54 13.16 0.46 5.42 5.40 25.07
PP 0.15 9.64 8.8 7.68 0.25 2.92 4.60 15.94
PP 0.075 6.67 6.7 6.4 0.11 1.31 2.02 9.97
OBC 5.50 5.6 5.7 0.03 0.32 4.79 6.12

Table 2: Pearson’s correlation coefficient among considered variables
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PD 19 1.0
PD 16 -0.8 1.0
PD13 -0.5 0.1 1.0

PD 4.75 -0.2 0.0 -0.3 1.0
SG20 0.1 -0.2 0.0 0.1 1.0
SG16 -0.1 0.0 0.1 0.1 0.7 1.0
SG10 -0.1 0.0 0.1 0.1 0.5 0.8 1.0

SG4.75 0.1 -0.2 0.1 0.0 0.2 0.1 0.2 1.0
SG B 0.3 -0.2 -0.1 0.0 0.2 0.1 0.0 0.1 1.0

PP 26.50 -0.2 0.2 0.2 0.1 0.0 0.3 0.3 0.0 -0.2 1.0
PP 19 -0.6 0.3 0.4 0.2 -0.1 0.2 0.3 0.0 -0.1 0.6 1.0

PP 13.20 -0.5 0.2 0.3 0.4 -0.1 0.1 0.2 0.0 -0.2 0.3 0.6 1.0
PP 9.50 -0.7 0.3 0.5 0.2 -0.2 0.1 0.2 0.0 -0.3 0.4 0.7 0.8 1.0
PP 4.75 -0.5 0.1 0.3 0.5 0.0 0.1 0.2 0.0 -0.1 0.2 0.5 0.7 0.7 1.0
PP 2.36 -0.5 0.2 0.2 0.5 -0.1 0.0 0.1 -0.1 -0.1 0.1 0.4 0.7 0.6 0.8 1.0
PP 1.18 -0.4 0.1 0.1 0.5 -0.1 0.0 0.1 -0.1 -0.1 0.3 0.4 0.7 0.6 0.6 0.8 1.0
PP 0.60 -0.5 0.1 0.2 0.5 -0.1 0.0 0.2 0.0 -0.1 0.3 0.5 0.7 0.6 0.7 0.8 0.9 1.0
PP 0.30 -0.1 -0.1 -0.2 0.4 0.0 0.0 0.1 -0.1 0.0 0.1 0.1 0.5 0.2 0.5 0.6 0.8 0.8 1.0
PP 0.15 -0.2 0.1 0.0 0.4 0.0 0.1 0.2 -0.1 -0.1 0.2 0.3 0.7 0.4 0.5 0.7 0.8 0.8 0.8 1.0

PP 0.075 -0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.0 -0.3 0.1 0.2 0.2 0.2 0.3 0.2 0.1 0.2 0.1 0.4 1.0

Table 3: Regression Statistics of Prediction Model

R 0.849
R-Squared 0.7209
Adjusted R-Squared 0.6552
MSE 0.0333
MAPE 2.4169

Table 4: Analysis of Variance (ANOVA) of MLR to Predict OBC

d.f. SS MS F p-value Fc at 5% LOS Remarks
Regression 20 7.3207 0.366 10.9761 0 1.695 F>Fc
Residual 85 2.8346 0.0333
Total 105 10.1554
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Figure 2: Correlation coefficient between the tested and
predicted values of the OBC

Table 5: Chi square test Calculation Table

OBC interval Observed Frequency (O) Expected Frequency (E) (O-E)2/E
4.8-5.1 2 3 0.33
5.1-5.4 4 5 0.20
5.4-5.7 16 9 5.44
5.7-6.0 10 15 1.67
Sum 32 32 7.64

Alternative Hypothesis (H1): There is significant difference
between the expected frequencies and the observed
frequencies.

The level of significance is set as 0.05.

Chi Square calculated = 7.64 Degree of freedom = 4-1 =3 Chi-
Square critical value for Degree of freedom 3 and significance
level 5% =7.815

The Chi-Square calculated is smaller then the critical value of
Chi-Square suggests there is no significant difference between
the observed values and the expected values and therefore, the
null hypothesis is accepted. Thus, we can say that, the OBC
obtained from MLR model can be used as prediction of OBC
in Marshall Mix design method.

6.4 Sensitivity Analysis

The sensitivity analysis is carried out for Optimum Bitumen
Content (OBC) datasets in order to determine the sensitivity
index. From the results, it can be seen that the most sensitive
parameter are aggregate gradations which brings about the
most change in the OBC. The sensitivity Index calculation of
various parameters of OBC are shown in Table 5 and Figure 3
Graphical Representation of Sensitivity Analysis respectively.

7. A new approach for the Marshall test

The normal design procedures that require the preparation
and testing of 15 mix samples, which is time consuming, the
MLR can be employed for estimating the OBC if accuracy of
the model can be improved in future time, then only three
specimens are prepared and tested to estimate the design
parameters and make sure they match the design criteria. This
approach saves time, resources, and the required effort to
estimate the OAC.

Figure 3: Graphical Representation of Sensitivity Analysis

8. Conclusion

In conclusion, this study assessed the effectiveness of Multi
Linear Regression (MLR) for predicting Optimum Bitumen
Content (OBC) in Marshall Mix Design, aiming to streamline
asphalt mix design processes. The MLR model showed
moderate strength, with low Mean Absolute Percentage Error
(MAPE), indicating close alignment between predicted and
actual values. Sensitivity analysis revealed the significant
influence of aggregate gradations on OBC. The study suggests
a novel approach using MLR to potentially reduce time and
resources required for OBC estimation compared to
traditional methods. However, further refinement of the MLR
model is warranted to enhance its accuracy. Overall, this
research contributes to advancing asphalt engineering
practices by offering insights into efficient and accurate OBC
prediction, potentially leading to more durable and
cost-effective asphalt pavements.

9. Recommendation

The reliability and accuracy of the model can be improved
through the following recommendations:

I. Expanding the modeling approach to incorporate
Artificial Neural Networks (ANN) can enhance reliability,
as machine learning techniques excel in capturing
non-linear relationships between variables.

II. Future research endeavors should broaden the scope by
including additional variables such as aggregate water
absorption, aggregate flakiness, angularity properties,
and bitumen viscosity, alongside factors like gradation
and specific gravity of materials. These enhancements
can provide a more comprehensive understanding of the
factors influencing Marshall Mix design, thus leading to
more accurate predictive models.

10. Abbreviations

MLR Multiple Linear Regression,
OBC Optimum Bitumen Content,
PD Percentage Down,
PP Percentage Passing,
SG Specific Gravity
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Table 6: Sensitivity Analysis of OBC parameters

IAVG I1 I2 OAVG O1 O2 SI
PD 19 27.4 4.7 51.0 5.4 5.5 4.8 -0.1
PD 16 22.5 5.0 35.0 5.6 5.5 5.6 0.0
PD13 27.3 5.0 65.0 5.5 5.2 5.2 0.0
PD 4.75 42.4 15.0 60.0 5.5 5.7 5.6 0.0
SG20 2.7 2.6 2.8 5.5 4.8 4.9 0.1
SG16 2.6 2.3 2.8 5.5 4.8 4.9 0.0
SG10 2.6 2.3 2.8 5.5 4.8 4.9 0.0
SG4.75 2.7 2.3 2.8 5.5 5.5 5.7 0.2
SG B 1.0 1.0 1.1 5.5 5.5 5.1 -0.9
PP 26.50 99.8 91.5 100.0 5.5 91.5 100.0 18.1
PP 19 97.0 75.3 100.0 5.5 75.3 100.0 17.6
PP 13.20 80.8 60.8 99.8 5.5 60.8 99.8 14.7
PP 9.50 69.6 39.1 88.8 5.5 39.1 88.8 12.6
PP 4.75 48.6 35.1 69.7 5.5 35.1 69.7 8.8
PP 2.36 37.4 24.1 54.1 5.5 24.1 54.1 6.8
PP 1.18 25.5 8.6 41.8 5.5 8.6 41.8 4.6
PP 0.60 21.5 8.6 34.9 5.5 8.6 34.9 3.9
PP 0.30 14.3 5.4 25.1 5.5 5.4 5.7 0.0
PP 0.15 9.6 4.6 15.9 5.5 4.6 15.9 1.8
PP 0.075 6.7 2.0 10.0 5.5 5.3 5.6 0.1
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