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Abstract

Power system contingency is a critical concern in ensuring the security, stability and efficiency of electrical grids. Contingency
analysis, which evaluates the potential impact of various contingencies on power system operation, plays a crucial role in maintaining
reliability. Traditional methods for contingency analysis often rely on deterministic or probabilistic approaches such as Newton
Raphson Load Flow (NRLF), although it is accurate but may have limitations in time consuming or computational efficiency. This
paper proposes a novel approach utilizing machine learning techniques for power system contingencies ranking. Firstly, calculate
performance indices; active power (PIP) and reactive power (PIV) performance index for each line outage condition using NRLF in
Matlab. Then, analysis compared the performance of various regression models including Gradient Boosting Regressor, Random
Forest, KNN, Decision Tree Regressor, and SVM on predicting two target variables, PIP and PIV. Finally, R-squared scores were
used to evaluate model performance. The ranking is made in descending order of most severe contingencies line that has high
value of performance index. The proposed methodology is validated through case studies on standard IEEE 14-bus test systems,
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demonstrating its capability for practical application in power system operation and planning.
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1. Introduction

Power system security is crucial for maintaining the reliability
and stability of electrical grids[1]. It’s essentially the ability of
the system to withstand disturbances or contingencies

without compromising safety, reliability, or customer service.

These disturbances could range from equipment failures to
extreme weather events or even malicious attacks. Ensuring
power system security involves careful planning, monitoring,
and response mechanisms. This includes factors like
maintaining proper voltage and frequency levels, managing
power flows, and having contingency plans in place for
various scenarios. Inadequate security can indeed lead to
catastrophic failures, blackouts, or other disruptions, which
can have serious consequences for both the grid operators
and end consumers. Therefore, investing in measures to
enhance power system security is essential for maintaining a

safe, reliable, and economically viable electricity supply [2]. .

In summary, power system security is essential for ensuring
that operating conditions remain within tolerable ranges. To
achieve long-term reliability and safety: 1. Proper design with
security as a primary concern is crucial. II. Regular
monitoring during operation to maintain parameters within
acceptable ranges is imperative. III. Good engineering
practices, supported by advanced analysis tools, are necessary
to achieve these goals. IV. Environmental changes continually
refine the requirements for power system security analysis
and assessments, prompting evolution in analysis tools. By
addressing these points, power systems can sustain reliability
and safety over the long run [3]. The prediction of changes in
line flow resulting from generator or transmission line outages
is facilitated by distribution factors, as discussed in references
[4]-[5]. The utilization of AC power flow analysis is elaborated

upon in [5]. This method offers valuable insights into how
alterations in the network configuration affect the distribution
of power flows throughout the system. Through AC power flow
analysis, engineers can anticipate and manage potential
overloads or imbalances in the grid, contributing to enhanced
system security and reliability. Contingency analysis involves
the selection and screening of potential contingencies.[6]
elaborates on complete bounding methods employed for AC
contingency screening, aiming to reduce computational
barriers. These methods provide efficient ways to assess the
impact of various contingencies on power system operation
without exhaustive calculations. By bounding the potential
outcomes, these techniques streamline the analysis process,
enabling quicker and more effective decision-making for
ensuring grid security and reliability. The main objective of
this paper of this paper is to propose a machine
learning-based methodology to enhance contingency ranking
in power systems using the Newton-Raphson load flow
method, aiming to improve system reliability and
decision-making capabilities.

The process of contingency analysis in power systems|7]
[81[9][10]. Let's summarize the steps: I. Contingency Creation:
This is where we identify all possible contingencies that could
occur in a power system. It involves creating lists of these
contingencies, which could include events line outages only.
II. Contingency Selection: Once you have a list of possible
contingencies, you need to select the most severe ones to
analyze further. This step involves assessing the impact of
each contingency on the power system, particularly focusing
on potential violations such as bus voltage or power limits.
You calculate an index to determine the severity of each
contingency, and then prioritize them based on this severity
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index. The goal is to identify the most critical contingencies
that need immediate attention. III. Contingency Evaluation:
In this final step, you develop strategies to mitigate the effects
of the most severe contingencies. This could involve taking
necessary control actions, such as adjusting generator outputs
or reconfiguring the network, to ensure the system remains
stable and within operational limits. Additionally, you might
implement security measures to prevent similar contingencies
in the future. The Performance Index (PI) method is used to
quantify the severity of each contingency and rank them
accordingly, aiding in the decision-making process during
steps 2 and 3. This systematic approach helps power system
operators anticipate and prepare for potential disruptions,
ensuring the reliability and stability of the electrical grid.[1].

The Newton-Raphson (NR) method indeed offers significant
flexibility and generality in analyzing power systems. Here’s a
breakdown of its key features and applications:

I. representational needs within power systems, such as
on-load tap changing (OLTC) and phase-shifting devices,
area interchanges, functional loads, and remote voltage
control. This means it can handle a wide range of system
configurations and control devices, making it versatile
for different operational scenarios.

II. Optimization of Power System Operation: NR load flow
serves as a central method for optimizing power system
operation. By iteratively solving the load flow equations,
the NR method helps in determining optimal operating
conditions, such as generator outputs and voltage levels,
to minimize system losses or meet other operational

objectives[11].

III. Sensitivity Analysis: The NR method enables sensitivity
analysis, allowing engineers to assess how changes in
system parameters or operating conditions affect
system performance. This is crucial for understanding
the impact of uncertainties and making informed

decisions about system design and operation [12].

IV. System-State Assessments: NR load flow facilitates
system-state assessments by providing insights into the
steady-state conditions of the power system. Engineers
can use this information to identify potential issues
such as voltage violations, line overloads, or voltage

stability problems.

Modeling of Linear Networks: While the NR method is an
iterative nonlinear technique, it is also used as the basis
for linearizing power system models in certain analysis
methods. Linearized models are valuable for stability
analysis, small-signal analysis, and control design.

Evaluation of Security: The NR method helps in
evaluating the security of power systems by identifying
critical contingencies and assessing their impact on
system stability and reliability. This is essential for
ensuring the robustness of the grid against potential
disturbances or faults.

VII. Transient Stability Analysis: Although NR load flow

primarily deals with steady-state conditions, it is often

used as part of transient stability analysis techniques.

By providing initial conditions for dynamic simulations,
the NR method contributes to assessing the system’s
ability to withstand and recover from transient

disturbances.

VIII. Online Computation: The NR formulation is well-suited
for online computation, allowing for real-time
monitoring and control of power systems. This enables
operators to quickly respond to changing conditions
and maintain grid stability and reliability.
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Figure 1: IEEE 14 Bus single line daigram
2. Methodology
The algorithm for contingency analysis using

Newton-Raphson load flow [6] solution can be summarized as
follows: 1. Data Input: Read the line data and bus data of the
given power system. 2. Base Case Load Flow Analysis: Perform
a load flow analysis using NRLF without considering any line
contingencies to establish a base case. 3. Line Contingency
Simulation: Simulate a line outage or contingency by
removing a line from the system and proceed to the next step.
4. Load Flow Analysis with Contingency: Conduct a load flow
analysis for the system with the specific line outage. Calculate
the active power flow in the remaining lines and determine
the maximum active power flow (Pmax). 5. Active Power
Performance Index (PIP): Calculate the active power
performance index, which indicates the violation of active
power limits in the system model under the specific
contingency. 6. Voltage Calculation: Calculate the voltages at
all load buses affected by the line contingency. 7. Voltage
Performance Index (PIV): Compute the voltage performance
index, indicating the violation of voltage limits at the load
buses due to the line contingency. 8. Overall Performance
Index (OPI): Compute the overall performance index by
adding the active power performance index (PIP) and the
voltage performance index (PIV) for each line outage. 9.
Repeat for All Line Outages: Repeat steps 3 to 8 for all line
outages in the system to obtain PIP and PIV for each
contingency. 10. Rank Contingencies: Rank the contingencies
based on the overall performance index (OPI), calculated from
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the values of the performance indices obtained in the optimizing power system operation, conducting sensitivity
previous steps. This algorithm allows for the systematic analyses, assessing system states, modeling linear networks,
assessment and ranking of line contingencies based on their evaluating security, and analyzing transient stability. It is
impact on the system’s performance, enabling effective particularly suitable for online computation. The NR
mitigation strategies to be implemented. formulation is essential for systems with significant angle
variations across lines and for control devices that impact
reactive and real power.

ToTaRT N
e )
' I. Formulation of Power flow equation: The power flow
Tnitiate and read system variables and equations for active power P and reactive power Q at bus
perform load flow for pre contingency case iare typlcally formulated as:
i n
‘—.| Simmlate the line outage contingency Pi = ‘/l Z |‘/l||‘/]||(Gl] COS(H;']') +Bij Sln(@,j)) 1)
1 i=1
Fun the load flow analysis for this outage
condition
! 3 ~
Calculate the power flows in all the lines and Qi = ‘/l ; |‘/l||‘/]||(Gl] Sln(aij) _Bij COS(@ij)) (2)
P =
I
: v II. Initail Guess: Initially, an initial guess for the voltage
Coleulare the voltages at allthe bues [ Compue Pre '—: magnitudes V; and phase angle 6; at all buses in the
P Compute overall system is assumed.
/ . performance index
7 All the line . (OPT) . . . . .
I outages ~ III. Linearization of Power FLow Equations:The power flow
T\ considered? // equations are linearized around the initial operating
\“n/ point using Taylor series expansion to obtain a linear
Raalk the contingencies based on overall approximation. This linearization process results in
performance index (OPT) linear equations for incremental changes in voltage
/-—4'—-,‘ magnitudes and phase angles.
(stop )
o IV. Jacobian Matrix Calculation : The Jacobian matrix,
Figure 2: algorithm for contingency analysis using N-R load denoted as ], is calculated based on the linearized power
flow flow equations. The Jacobian matrix represents the
sensitivity of power flow equations with respect to
changes in voltage magnitudes and phase angles.
Input Data V. Power Residual Calculation : Power residuals, denoted
v as AP and AQ are calculated as the difference between
Data Processing and Splitting scheduled and calculated values of active and reactive
¥ power injections at each bus, respectively.
Train Random Forest Model
¥ AP; = Pj scheduled = Pi @)
Evaluate Performance
v
Generate Prediction AQ; = Qi scheduted — Qi 4)
¥
Plot Result VI. Update voltage phasors : Using the Jacobian matrix and
¥ power residuals, incremental changes in voltage
Calculate Error Percentage magnitudes AV; and phase angle 6 are calculated using
y the following linear system of equations:
Plot Error Percentage
AP ] o (5)
Figure 3: General outline of Methodology AQ| 7 |AV

VII. Update Voltage magnitude and Phase angles: The
2.1 Newton Raphson Load Flow Method voltage magnitudes V; and phase angles 0; at all buses

The NR method is used to calculate load flow of transmission are updated using the calculated incremental changes:

line because X/R is greater than 1 which means inducatance V'Y = Vipia + AV; (6)
loss can not be neglected. It offers significant flexibility and
versatility, allowing for convenient and effective integration of

various representational requirements. These include load tap grew — gold 4 Ag, @
changing, phase-shifting devices, area interchanges, ! !

functional loads, and remote voltage control. The NR load Finally, the converged solution is validated to ensure that
flow method serves as a fundamental technique for it satisfies all system constraints and operating limits.
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This iterative process continues until the solution converges to
an acceptable accuracy level. The NR method is widely used
for solving power flow problems in power system analysis due
to its efficiency and effectiveness.

2.2 Approach For Contingencies Ranking

Contingency ranking in power systems involves the systematic
evaluation of potential disruptions or failures within the
system and their respective impacts. By simulating various
contingencies, such as line outages or equipment failures, the

robustness and resilience of the power grid can be assessed.

This process aids in identifying critical contingencies that may
lead to adverse consequences, such as voltage instability or
excessive power flows. By prioritizing contingencies based on
their potential impact, system operators can proactively
implement mitigation strategies to enhance system reliability
and resilience. Additionally, continuous monitoring and
analysis of contingencies play a crucial role in maintaining the
stability and security of power systems, especially in the face
of evolving operational conditions and emerging challenges.

In this section, we delve into the Newton-Raphson method
applied to contingency ranking within power systems. This
approach has been explored across IEEE 14-bus systems. The
outcomes derived from this method are subsequently utilized
to compute performance indices, namely the active power

performance index and voltage power performance index.

These indices serve as critical metrics for evaluating system
performance under different contingencies. Contingencies
are prioritized based on their overall performance index, with
higher values indicating greater severity, and are arranged in
descending order accordingly.

2.2.1 Active power performance index PI,

The Active Power Performance Index (PIP) is a crucial metric
used to evaluate the degree of line overloads within a power
system. It provides insights into the extent to which power
lines are operating beyond their capacity. The PIP is calculated
using the following formula:

o) ]

where, P; represents the active power flow on line i, P]"** is the
Maximum capacity of line i, n is the penalty function (equal
to 1), L is the total number of lines in the system and w is
weighting factor nearly equal to 1. The maximum active power
flow Ppay is calculated as :

|

where, V; and V; are the voltages at buses i and j obtained from
NRLF method and X;; represents the reactance between buses
iandj.

L

Pl =}

i=1

w

P;
2n

Pmax
l

(8)

Vi + Vj

Pmax:( 9

2.3 Reactive Power Performance Index PI,

It provides insights into the extent to which power lines are
operating beyond their reactive power capacity. The PI, is

calculated using the following formula:

or _NZM(W) Vil =1V;7| 2”+1§(W) o 1” 0
v = \2n Vimax_ Vimin = \2n Q;nax
where, Vl.max and Vl.min are the maximum and minimum of i'"

bus voltage, IVL.SP | is the specified magnitude of voltage of i*"
bus, n is the penalty factor (taken as 1), Ny, is total number of
buses in that system.

2.4 Overall Performance index

OPI serves as a valuable tool in contingency analysis, enabling
efficient decision-making and risk management in power
system operations. It combines various performance indices,
such as the Active Power Performance Index (PI,) and
Reactive Power Performance Index (PI,) , to provide a holistic
assessment of the impact of contingencies on system
operation. Mathematically,

OPI =PI, +PI, (11

Typically, higher values of the OPI indicate greater severity of
contingencies. By considering both active and reactive power
aspects, the OPI offers a balanced evaluation of system
performance under different conditions.

3. Contingencies Ranking using Machine
Learning Approach

This paper explores using machine learning to assess electrical
network security, focusing on simulating different network
operating conditions. It discusses training ML algorithms per
contingency for predicting network failures and analyse the
predictability of contingencies. Results suggest that ML tools’
predictive power is influenced by training data distribution.
Various efficient algorithms and methodologies based on
graph theory, matrix properties, or stochastic processes have
been proposed to handle the challenges of contingency
analysis. Machine learning techniques have gained popularity
for power flow predictions due to their practicality and
adaptability, particularly in real-time power management
systems like digital twin-based applications. This paper
focuses on the application and limitations of ML techniques
in contingency analysis and introduced a novel ML-based tool
to provide new power flow data for both training and testing
purposes [13]. In this paper five types of model are tested for
training which are described below:

I. Gradient Boosting:Gradient Boosting is an ensemble
learning technique that builds a series of weak learners
(typically decision trees) sequentially, with each
subsequent tree learning from the errors of the previous
one [14]. Mathematical Formula: The prediction F(x) for
a given input x is computed as the sum of predictions
from all individual weak learners:

N
FX)= Y fiw (12)
i=1

Where fi(x) is the is the prediction of the i- th weak

learner, and N is the total number of weak learners.
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II. Random Forest Regressor: Random Forest is another
ensemble learning method that builds multiple decision
trees independently and averages their predictions to
reduce overfitting [15] [16] [17].

Decision Tree-1 Decision Tree-2 Decision Tree-N

Result-1 Result-2 Result-N

Majority Voting / Averaging

Final Result

Figure 4: Tllustration of Random Forest trees

Ly
y==) fiw (13)
N3
where fi(x) is the prediction of the i-th decision tree, and
N is the total number of trees in the forest.

III. Support Vector Machine: SVM is a supervised learning
algorithm used for classification and regression tasks. In
regression, SVM aims to find the hyperplane that best

fits the data points[18].

1

n
5= lwl*+C Y max(0,|y;, —(w.x; +b)| —€ (14)

min,
w

i=1

w is the weight vector, b is the bias term, C is the

regularization parameter, and ¢ is the margin parameter

K-Nearest Neighbours (KNN): K-Nearest Neighbours is a
non-parametric and instance-based learning algorithm
used for classification and regression tasks. It predicts
the target variable by averaging the values of its k nearest
neighbours [19] [20] [21].

(15)

where y; represents the target value of the i-th nearest
neighbour.

Decision Tree is a tree-like model where each internal
node represents a feature, each branch represents a
decision based on that feature, and each leaf node
represents the outcome (prediction) [22].

N
pi(l—p;) (16)

i=1

imppurity(D) =

3.1 Model Training and Evaluation:

Data Splitting: The dataset was split into training and testing
sets using an 80-20 split, with 80% of the data used for training

and 20% for testing. The result from NR method (Changing
loading from 75% to 125% is used as dataset. Splitting
Function: The train test split function from the model
selection module was utilized for data splitting. Environment:
Model training and evaluation were conducted using Google
Colab, a cloud-based Jupyter notebook environment, to
leverage high-performance computing resources. Model
Fitting: The training data were used to fit the models using the
selected algorithms. Hyperparameter Tuning: Techniques
such as Grid Search Cross-Validation were employed for
hyperparameter tuning to optimize the models. Performance
Evaluation: Model performance was evaluated using the
coefficient of determination (R-squared) on the testing set to
assess predictive accuracy. Prediction: The trained models
were then used to make predictions on the testing set.

4. Results and Discussion

4.1 Results obtained from Newton Raphson Load flow

Contingencies ranking based on total performance indices
is done using NRLE The result obtained after using newton
Raphson load flow method for IEEE 14 bus system is shown
in table 1. The total performance indices for all possible (N-1)
contingencies are computed. Then using these data to train
machine learning and calculating result for other bus data. 14
bus system consists of 4 generator buses, 9 load buses and 1
slack bus.This system has 20 transmission line where single
respective line outage is consider for each line contingency.

Table 1: Performance index and contingency ranking using

NRLF
O.L.N PI, PI, OPI Rank
1 0.196294 | 3.945016 | 4.14131 1
2 0.058422 | 2.728651 | 2.787073 3
3 0.073697 | 2.669195 | 2.742892 4
4 0.058797 | 1.922092 | 1.980889 11
5 0.055592 | 2.254917 | 2.310509 6
6 0.050223 | 1.881235 | 1.931458 14
7 0.054105 | 2.036255 | 2.09036 7
8 0.060753 | 1.662663 | 1.723416 19
9 0.047595 | 1.76152 | 1.809115 18
10 0.068953 | 3.363528 | 3.43248 2
11 0.047677 | 2.011383 | 2.05906 8
12 0.047968 | 1.771293 | 1.819261 16
13 0.050026 | 1.927438 | 1.977464 12
14 0 0 0 20
15 0.061787 | 2.497595 | 2.559382 5
16 0.047946 | 1.763482 | 1.811428 17
17 0.049211 | 1.934753 | 1.983964 10
18 0.047434 | 1.961641 | 2.009075 9
19 0.047644 | 1.807943 | 1.855588 15
20 0.048094 | 1.894945 | 1.943038 13

From the Table 1, The Active Power Performance Indices and
Voltage Performance Indices for line outage is 0.196294 and
3.945 is highest than any other contingency. Also Overall
performance index (OPI) is highest. Hence we conclude that
line outage-1 is highest severity case followed by line outage
10,2, 3, 15, 5,7,11, 13, 20,6,19, 12, 16, 9, 8 and 14 respectively in
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descending order. For line outage-14, the active power
performance index and reactive power performance index is
zero because when that line is outage then it leads to outage of
generator hence this line is discarded.

4.2 Results Obtained from machine learning

section, performance indices from machine learning approach
is presented for 5 models. The main objective is to calculate
indices for different bus value after trained it by the result from
Newton Raphson Method.

. Results of performance indices using Decision Tree
Method: Figure 4,5,6,7 shows the results of Plp, Pl,,
OPI and Error from decision tree method.

Actual vs Predicted PI Values

= Actual value of PI
mmm Predicted value of PI

Pl Values

9 10 1

Outage Number

12

Figure 5: Value of OPI index using decision tree method

Actual vs Predicted Plp

= Actual Pip
mm Predicted Plp

PIp Value

9

10
Outage Number

112

Figure 6: Value of P, index using decision tree method

Actual vs Predicted Plv

= Actual Piv
mem Predicted Plv

2259

2.004

1754

1.50 4

PV Value

1.25 4

1.00 4

9

10
Outage Number

1 12

Figure 7: Value of P, index using decision tree method

Error Percentage on prediction of PI for each Qutage Number

o

Error Percentage

Iy

7 8 9 10 11 15 16 17 18 19 20

Outage Number

12 13 14

Figure 8: Error Percentage on predtiction of PI for each
outage number

II. Results of performance indices using SVM method.
Figure 8, 9, 10, 11 shows the results of PI,, PI;, OPI and
Error from SVM method.

Actual vs Predicted Plp

= Actual Plp
mm Predicted Pip
014

0.10

0.08

PIp Value

0.06

7 8 9 10 11 16 17 18 19 20

Outage Number

12 13 14 15

Figure 9: value of PI}, index using SVM method

Actual vs Predicted Plv

= Actual Plv
mmm Predicted Piv

PV Value

9

10 1
Outage Number

12

Figure 10: value of PI, index using SVM method
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Actual vs Predicted PI Values Actual vs Predicted Plv

= Actual value of PI
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3237 m predicted value of PI 300 = predicted Plv
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Figure 11: Value of OPI indices using SVM method Figure 14: value of PI, index using Gradient Boosting method
. Actual vs Predicted PI Values
Error Percentage on prediction of Pl for each Outage Number
35 W Actual value of PI
mmm Predicted value of PI
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Figure 15: Value of OPI using Gradient Boosting Method

Figure 12: Error percentage on prediction of PI for each
outage line using SVM method

Error Percentage on prediction of PI for each Outage Number

III. Results of performance indices using Gradient Boosting
method. Figure 12,13,14,15 shows the results of P1, PI,, *1
OPI and Error from Gradient Boosting method.

o

Error Percentage

IS

Actual vs Predicted Plp

== Actual Pip

mm Predicted Pip
0.14 -

0.12 4

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Outage Number

0.10 4

PIp Value
°
°
&

Figure 16: Error percentage on prediction of PI for each
outage line using Gradient Boosting Method

°
o
&

0.04 4

0.02 4

1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 20
Outage Number

Figure 13: value of PI}, index using Gradient Boosting method IV. Results of performance indices using KNN method.
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Pl Values
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Figure 17: value of P}, index using KNN method
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Figure 18: value of PI, index using KNN method
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Figure 19: value of OPI index using KNN method

Error Percentage on prediction of PI for each Qutage Number

Error Percentage
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Figure 20: Error percentage prediction of OPI for each outage
number using V method

V. Results of performance indices using Random forest
method. Figure 20,21,22 and 23 shows the results of P,
PI,, OPI and Error from Random Forest method.

Actual vs Predicted Plp

= Actual Pp
= Predicted Pip

0.10

PIp Value
°
8
8

0.06
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Figure 21: value of P}, index using Random Forest method

Actual vs Predicted Plv
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Figure 22: value of PI, index using Random Forest method
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Actual vs Predicted PI Values

= Actual value of PI
mm Predicted value of PI

Pl Values

& 9 10 11 12 13 14 15 16 17 18 19 20

Outage Number

Figure 23: CValue of OPI index using Random Forest Method

Error Percentage on prediction of Pl for each Outage Number

Error Percentage

8§ 9 10 1 12 13 14 15 16 17 18 19 20

Outage Number

Figure 24: Error percentage on prediction PI for each outage
case

¢ Performance Assessment: The performance of each
model was assessed based on the R-squared score
obtained on the testing set.

e Visualization: Actual vs. predicted values were visualized
using bar plots to compare the predictive capabilities of
the models.

Further Analysis: Additional analysis was conducted to
understand the strengths and weaknesses of each
algorithm in predicting the target variables 'Piv’ and
"Pip’.

Through extensive experimentation and analysis, we evaluated
the performance of each model based on metrics such as R-
squared score and predictive accuracy shown in table 2.

R Squared Error obtained while calculating PI, and PI, by
using above method is shown in Table 2:

Table 2: R squared Error in ML methods

Model Name PI, PI,

Gradient Boosting Regressor | 0.957456118 | 0.994412534
Random Forest 0.9586081 0.992687211
KNN 0.505518816 | 0.650856696
Decision Tree Regressor 0.963404296 | 0.996176729
SVM 0.67293019 | -14.78624804

Our results indicated that ensemble methods such as Gradient
Boosting and Decision tree Regressor outperformed other

models in terms of predictive accuracy and robustness. These
models demonstrated the ability to effectively rank
contingencies in power systems, providing valuable insights
for system operators and planners.

5. Conclusion

our study highlighted the importance of considering model
interpretability, computational efficiency, and generalization
capability when selecting machine learning models for
real-world applications in power systems. While complex
models like SVM and neural networks offer high predictive
power, simpler models like Decision Trees and KNN provide
better interpretability and computational efficiency.

Overall, our findings contribute to the growing body of
research on leveraging machine learning techniques for
contingency ranking in power systems. By accurately
assessing the severity of potential contingencies, our
approach facilitates proactive decision-making and enhances
the resilience of power infrastructure against disruptions.
Future research directions may focus on exploring hybrid
models and incorporating additional features to further
improve contingency ranking accuracy in power systems.

6. Recommendation

The above Result and conclusion show that the contingency
ranking of IEEE 14 bus system using ANN method which gives
accurate result in compare to other analytical method. This
method can be further implemented in INPS which help in
power system security and reliability.
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