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Abstract
The investigation looks into how sampling rate variations affect induction motors fault diagnosis based on signal spectrum analysis.
Modern companies depend heavily on induction motors, but they can develop mechanical and electrical problems that, if not found
quickly, can result in significant financial loss and downtime. Fault identification relies heavily on signal processing techniques,
particularly Motor Current Signature Analysis (MCSA). The Fast Fourier Transform (FFT) technique for frequency spectrum analysis
is the main topic of this work. This study investigates how the FFT spectrum is affected when sample rates are changed using
decimation and interpolation techniques, with a focus on the diagnosis of broken rotor bar (BRB) problems in induction machines.
The methodology involves determining acquisition parameters, calculating the required sampling rate, performing interpolation
and decimation, and applying FFT with proper window functions. Spectral leakage, a common issue in FFT-based techniques,
is addressed using Hann window function. Experimental results are presented for a healthy motor, a motor with one BRB at
different loading conditions, and a motor with BRB at no load. The study compares original sampling rates of 20 KHz obtained from
experimental setup in laboratory and with resampled sampling rates using purposed methodology. The findings emphasize the
importance of choosing an appropriate sampling rate based on fault visibility and computational efficiency.
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1. Introduction

Since the second industrial revolution started, induction
motors have become really important in modern industries.
They are used in various ways, like generating power and in
things we use every day. For example, they play a crucial role
in renewable energy sources like wind power plants.
Induction motors also help convert electrical energy into
mechanical energy, driving many industries and impacting a
country’s economy. They’re widely used in everyday things
like electric vehicles, fans, water pumps, and more. While
there are other machines that can do the same job, induction
motors are popular because they are simple, efficient, and
easy to fix. They use a lot of electricity, about half of the total
generated worldwide [1]. These equipment feature moving
parts, which makes them prone to malfunctions. There are
two primary categories of these issues: mechanical and
electrical. Electrical faults, which include inconsistent voltage,
phase drop, short circuits between turns, and grounding
issues, are mostly associated with the stator. Most faults are
mechanical in nature, and include things like broken end
rings, rotor bars, and damaged bearings, as well as faulty part
positioning. These faults are directly or indirectly related with
each other and are degenerative in nature. Hence, it is very
important to detect them at an incipient stage in order to
avoid extensive economic loss and time-consuming repair
processes.

Electrical machine diagnostics today employ a variety of faults
detection techniques. Advanced signal processing methods
are essential for predicting engine maintenance requirements.
There has been a discernible shift in the development of

digital technology during the last few years. This change
makes it possible to use reasonably priced hardware platforms
that have efficient data processing capabilities. These
hardware platforms can be used to enhance the performance
of real-time diagnostic systems in addition to identifying
instant messaging malfunctions [2]. Determining the best
methods for signal processing is crucial to determining
whether induction motor (IM) maintenance is required.
Predicting maintenance can cut down on expenses and repair
time for instant messaging. Scholars across the globe are
investigating several approaches to accomplish this. Spectral
Kurtosis (SK), Park’s Vector Approach (PVA), Wavelet
Transform (WT), Empirical Mode Decomposition (EMD),
Singular Value Decomposition (SVD), Hilbert Transform (HT),
Wigner-Ville Distribution (WVD), Principal Component
Analysis (PCA), Independent Component Analysis (ICA), and
Kalman Filter (KF)are just a few of the widely used techniques.

The major goal of any signal processing techniques was to
identify any new frequencies in the overall signal of the system
that would point to a fault. In order to locate and save the tiny,
delicate, and crucial information linked to faults, researchers
spent a great deal of time developing signal processing
systems. They concentrated on improving the spectrum
resolution under both steady state and dynamic conditions.
This was a shared objective to enhance our ability to recognize
and address machine problems. A significant number of
AI-based research are also being done and number is
increasing. The accuracy and maturity of AI- algorithm
depends on the data size [3]. Thanks to different
mathematical modeling like Finite Element Method (FEM) [4],
data collection is possible using simulation. But the collection
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of large set of data at higher sampling rate for better spectral
resolution and accuracy is issue for both simulation and
experimental set up. It comes with calculation complexity and
memory storage requirement. The data acquisition at higher
sampling rate in real time diagnosis of fault in industrial
machine is also not economical [3]. This is not a parameter
that can be easily adjusted [5].

This paper describes how to change the initial sample
frequency by decimation and resampling, and it shows how
change in sampling rates affect the signal’s frequency
spectrum for diagnosing broken rotor bar (BRB) faults in
induction motor in various scenarios.

2. Background

Motor current signature analysis (MCSA) based fault
diagnostic techniques are being extensively used in research,
because these techniques are mostly noninvasive in nature
and require simple measurements [6]. After the current
measurement, there comes an entire domain of signal
processing techniques to estimate the nature and the severity
of the fault. The fast Fourier transform (FFT) one of the most
utilized signal processing methods for these purposes [7]. In
this paper FFT is used to study the frequency spectrum of
current signal obtained from the experimental set up of
healthy motor and induction motor with broken rotor bars.

Depending on the defect’s severity, each failure causes a
different frequency and modulation index in the stator
current. The geometric and electrical parameters of the rotor
and stator determine the mathematical representation of
these fault frequencies. Early detection of a broken bar is
crucial because when one breaks, the subsequent bars are
subjected to increased thermal stress, which may lead to their
failure. Certain harmonics in the frequency spectrum are
produced by these faults [8].

fbr = fs ±2ks fs (1)

fbr = [(k/p)(1− s)± s] fs (2)

where k = 1,2,3. . . . . . ..., fs is supply frequency, s is the slip and
p is the no of poles pairs of the machine. The fault-related
harmonics are denoted as the left side band (LSB) and right
side band (RSB). These fault harmonics can be buried under
fundamental frequency spectrum because of their dependency
on slip. These problem is more severe for the motor running
under the low load condition.

2.1 Fast Fourier Transform

In numerous scientific fields, the Fast Fourier Transform
(FFT), is a useful tool. It assists in splitting an erratic signal
into distinct components known as sinusoids. Amplitude is
the term used to describe the frequency and size of these
sinusoids. These sinusoids typically get smaller in size as we
examine across a range of frequencies. The foundational
component is the most significant. This process is represented
mathematically by formulas known as the discrete Fourier

transform (DFT) and its inverse.

Xk =
N−1∑
n=0

xn e−
j 2πkn

N , k = 0,1,2, ...(N −1) (3)

xn = 1

N

N−1∑
n=0

Xn e−
j 2πkn

N , k = 0,1,2, ...(N −1) (4)

where k is the current frequency, N is the number of samples,
n is the current sample, xn is the signal value at time n, and Xk

is the DFT resulting bin.

2.2 Interpolation

The technique of guessing or projecting values between
current data points in a signal is known as interpolation. Put
otherwise, it’s a technique for adding to or filling in the blanks
within a range where the initial signal values are known. There
are various interpolation methods, and the method of choice
is determined by the particular needs and signal
characteristics. Spline interpolation, cubic interpolation, and
linear interpolation are a few popular interpolation
techniques.

If the interpolation is done by n times, the new frequency of
sampling is increased by fr =n fs along with the bandwidth
(BW). Where, fr is new resampled frequency and fs is original
sampling frequency.

2.3 Decimation

The process of decimation involves lowering the amount of
samples in a signal, usually by deleting some of the samples
on purpose. It is the interpolation process done in reverse.
Decimation is the process of lowering the number of samples
to get a lower sampling rate, whereas interpolation entails
predicting values between current samples to increase the
number of data points.

Mathematically, The relationship between the initial sampling
rate ( fs ) and the new sampling rate ( fd ) following decimation

can be expressed as fd =
fs

m
along with the bandwidth (BW).

where m is the decimation factor which can be chosen
according to the requirement.

Hence, using interpolation and decimation we can perform
fractional resampling as:

fr = n

m
fs (5)

And the frequency resolution ∇ f = fs

N
, where fs is sampling

frequency and N is the no of input data samples. From
equation (5) the value of n and m or N can also be choose in
such a way that the fundamental frequency will be equal to
the exact integer multiple frequency resolution which also
helps in reducing the effect of spectral leakages for FFT based
techniques [5].

2.4 Methodology

The following is the intended methodology for altering the
signal’s sample rate through the use of intended techniques:
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1. Find the acquisitions parameters like sampling
frequency fs , fundamental frequency of the signal and
sampling length N.

2. Determine the required sampling rate fr .

3. Using Eqn.5, determine the integer value of n and m and
proceed to interpolate n times.

4. Decimate the interpolated signal m times to get the
required sampling rate.

5. Find the FFT of the resampled signals using proper
window functions (Hann Window).

When spectral energy from a signal spills into nearby
frequency bins, it’s called leakage. Because window functions
taper the signal towards the endpoints, they assist reduce
leakage. For this, functions like Hann and Hamming are
frequently employed. For this research Hann window function
is used to perform the signal analysis. Spectral leakage is one
of the major problem of FFT techniques which has not been
sufficiently studied [9]. When two characteristic frequencies
are positioned closely together, spectral leakage becomes
more noticeable because the spurious components of both
frequencies interfere with each other. This condition
frequently occurs when broken rotor bar detection occurs in
induction motors, especially when the motor is operating with
a low mechanical load, changing loads, or low-frequency load
oscillations. In these cases, the fault’s characteristic frequency
nearly matches with the main frequency. The spectral leakage
caused by the main frequency interferes with spectral
components that are close together, like those linked to
broken rotor bars, if the main frequency does not match
specific requirements, as stated by equation (5). While total
reduction of leakage is not possible, it can be reduced by
employing a Hann window [5].

3. Experimental Results and Discussion

The motor input current of healthy motor and motor with one
and two broken rotor bars(BRB) at different loading
conditions were obtained from experimental setup. The
motor bars were drilled to simulate the BRB. Initially the
current data is obtained at sampling rate of 20kHz initially.
Following cases are studied at different sampling rates.

3.1 Case A: Healthy motor at 100% of the rated load.

The first case of the study is done for healthy motor at 100% of
the rated load. The motor is fed from the grid supply of
frequency 50Hz. The original sampling frequency is 20 KHz
and study is done at 2 kHz and 32 kHz using purposed
method. The original data length is 4×106. The nearest power
of two to the data length is N= 218 = 262144. Figure 1 gives the
FFT of the healthy motor using Hann window and without
using Hann window at sampling rates of 2 KHz (m=10, n=1),
20 KHz (original) and 32 KHz (m=5, n=8). The spectrum is
zoomed at near the fundamental region. The resampled
sampling frequencies are calculated using purposed method.
The window length for 2 KHz and 32 KHz is 16384 and 524288.
It shows that the spectrum of the signal using Hann window is

sharper than without using. It also shows that the more the
sampling rate sharper the spectrum of the signal.

Figure 1: FFT spectrum of original and resampled data signal
for healthy motor at 100% of rated load with and without
Hann window

3.2 Case B: Motor with 1 BRB at 25%, 50% and 100%
of the rated load.

The second case study is done for Induction motor with one
broken bars for three loading condition: 25%, 50% and 100%
of the rated load. The study is done for original sampling rate
(20KHz), 2 KHz and 32 KHz. The window lengths are same as
previous case. Figure 2 shows the FFT spectrum for different
sampling rate at different loading condition. The spectrums
are zoomed in region of interest which is near fundamental
frequency as the fault bands due to broken bar can be seen
near fundamental frequency. In Figure 2a for 25% loading
condition, without window we cannot see any LSB or RSB.
With Hann window the LSB and RSB for the sampling rate of
20 KHz and 32 KHz are clearly shown but these components
are shown in a sharper way can be easily distinguish but we
cannot see LSB of 2 KHz sequence clearly. Similarly Figure 2b
shows the spectrogram of the signal for 50% loading condition
and Figure 2c shows the spectrogram of the signal for 100%
loading condition. Figure 3 shows comparing spectra
obtained at 32 KHz and 50 KHz sampling rates reveals
minimal enhancements in spectrum sharpness despite
increased computational time and memory usage. Utilizing
MATLAB 2023b with an Intel Core i5 processor, simulation
times for 25% loading condition with 1 BRB were 0.54181
seconds and 0.7213 seconds, with memory usage at 117.8948
MB and 186.0962 MB, respectively. While higher sampling
rates may marginally improve spectral resolution, the
associated computational burden may not always justify the
benefits, particularly when spectral differences are
negligible.Recognizing that the presented simulations
represent single-case scenarios, future research should
encompass diverse cases and multiple iterations to
comprehensively understand the sampling rate’s impact on
fault diagnosis accuracy and efficiency.
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(a)

(b)

(c)

Figure 2: FFT spectrum of original and resampled data signal
for motor with 1 BRB with and without Hann window. a) at
25% loading, b) at 50% loading, c) at 100% loading

3.3 Case C: Motor with broken rotor bar at no load

In this study the data obtained from the motor with broken
rotor bar at no load condition is studied. As slip at low load
condition is very low which means the LSB and RSB are very
near to fundamental frequency and their amplitude is very
weak compare to the amplitude of fundamental component
which decreases the visibility of fault based harmonics. Figure
4 shows the spectrum of the data at no load condition for
different sampling frequency. From the plot we can see that at
no load it is very difficult predict which spectrum is faulty and
which one is healthy as the spectrum of healthy and faulty
condition are almost identical. Even if we resampled the
original sampling rate the fault harmonics cannot be seen.

Figure 3: Comparison of FFT spectrum of 32 KHz and 50 KHz
data signal for motor with BRB1 at 25% loading condition.

(a)

(b)

(c)

Figure 4: FFT spectrum of the healthy and motor with broken
rotor bars at no load for different sampling rates of input
signal, a)for 2 KHz, b) for 20 KHz, c) for 32 KHz
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4. Conclusion

The analysis highlights the significance of sampling rates in
signal spectrum-based fault diagnosis of induction machines.
The study demonstrates that changing sampling rates can
affect the visibility and sharpness of fault-related harmonics
in the FFT spectrum. The use of Hann window functions
proves effective in mitigating spectral leakage issues. The
results emphasize the need for a careful selection of sampling
rates based on fault characteristics and computational
considerations. Higher sampling rates may not necessarily
improve fault detection and can lead to increased
computational complexity without significant benefits. In
conclusion, the research provides valuable insights into
optimizing sampling rates for fault diagnosis in induction
machines, contributing to the development of efficient and
reliable diagnostic systems for industrial applications.
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