
Proceedings of 15th IOE Graduate Conference
Peer Reviewed

Year: 2024 Month: May Volume: 15
ISSN: 2350-8914 (Online), 2350-8906 (Print)

Nepali Sign Language Letter Detection and Finger Spelling Using
Mediapipe and CNN
Guptaraj Shrestha a, Nishan Thing b, Prajita Dhakal c, Prasanga Dahal d, Pukar Karki e, Manoj
Kumar Guragai f

a,b,c,d,e,f Department of Electronics and Computer Engineering, Purwanchal Campus, IOE, TU, Nepal
 a 076bct034@ioepc.edu.np , b 076bct052@ioepc.edu.np , c 076bct057@ioepc.edu.np , d 076bct058@ioepc.edu.np , e pukar@ioepc.edu.np , f

manojkguragai@ioepc.edu.np

Abstract
This paper describes the development of a machine learning model to translate Nepali Sign Language (NSL) gestures into
corresponding Nepali text format. The system utilizes computer vision and deep learning techniques, specifically a Convolutional
Neural Network (CNN) model trained on a dataset of over 2,500 images per label with total of 50 labels. The training accuracy was
99%, whereas the validation accuracy was 87.78%. Training loss settled at 1.18%, and validation loss settled at 8.258%. A dropout
layer and early stopping function were introduced, and the model was trained for 50 epochs. The model achieved training accuracy
of 99.84% and validation accuracy of 99.80%. Similarly, model Training Loss was 0.6% and Validation Loss was 1.16%. The
Accuracy curve showed that the both validation and training accuracy gradually increased to 90% for 10 epochs and became steady.
Similarly,in Loss curve both validation and training loss gradually decreased to 4% over the course of 10 epochs and stabilized. A
Classification table was created using 20% of total dataset with 500 for each label. Model performance was exceptional for most of
the labels achieving precision, recall and F1-score close to 1. However,for some labels ,model performance was lower in terms of
precision (less than 0.98). The overall accuracy of model was 0.99 describing that model perform well on the entire dataset. The
trained model was integrated into a user-friendly web application along with the logic for finger spelling to verify and validate the real
life use case of the research.

Keywords
Nepali Sign Language, Machine Learning, Convolutional Neural Network, MediaPipe

1. Introduction

Sign language is an expressive form of communication used
by individuals who are deaf or hard of hearing. It allows them
to convey thoughts, ideas, and emotions through manual
gestures, facial expressions, and body movements. However,
deaf individuals often encounter significant barriers in their
daily interactions, primarily due to the difficulty of
communicating with those who do not understand sign
language.

There are numerous sign languages, such as American Sign
Language, Indian Sign Language, Nepalese Sign Language, and
so on. The signs used in these sign languages are not all the
same. In our country, Nepal, various organizations and schools
have been assisting deaf people to learn Nepali sign language.

Understanding the importance of connecting the deaf and
hearing communities, multiple technologies aimed at
improving communication using Nepalese Sign Language for
persons who are deaf or hard of hearing were studied. It was
found that there weren’t any specialized sources online
regarding Nepalese Sign Language (NSL). As a result, we
aimed to create a model that would translate the NSL into
textual output. The user will provide input via webcam, and
the model can detect the hand gesture and output the
word/alphabet that the user provided as input to the model.

This paper shows a model that can detect 47 Nepali Alphabets,
2 symbols, and one blank. The paper proposes the use of a

Convolution Neural Network (CNN). The paper present the
use of Google’s MediaPipe which is a Framework for building
machine learning pipelines. With the help of MediaPipe Hand
Model Model, detect hand region and extract keypoints from
the hands.

2. Literature Review

Sign language is a crucial communication mode for the deaf
and hard-of-hearing community. Automatic sign language
recognition (SLR) systems have the potential to bridge the
communication gap between these communities and the
hearing world. This review focuses on recent advancements in
video-based SLR systems that leverage deep learning
techniques, particularly Convolutional Neural Networks
(CNNs) and Long Short-Term Memory (LSTM) networks.

Recent literature in sign language recognition highlights a
transformative shift towards deep learning methodologies,
particularly evident in a pivotal study on Nepali Sign
Language [1]. Deep learning is applied for both motion
detection and detailed exploration of gestures, extracting
spatial and temporal features. Two approaches are explored:
one using CNN and RNN, and another using CNN and Vision
Transformer. The latter outperforms in accuracy, emphasizing
the growing importance of deep learning in enhancing sign
language recognition systems. These advancements
contribute to improved communication accessibility for
individuals relying on sign language.

Pages: 166 – 170



Proceedings of 15th IOE Graduate Conference

Figure 1: System Block Diagram

Expanding on this foundation, another significant
contribution emerged in the form of a novel method for
character identification in American Sign Language, utilizing
Convolutional Neural Networks (CNNs) [2]. The research not
only introduced an innovative approach but also emphasized
the indispensable role CNNs play in the realm of sign
language recognition, particularly in the context of character
identification. The implications of this study extend beyond
American Sign Language, shaping the trajectory of gesture
recognition in a broader spectrum.

Diversifying the research landscape, a study concentrating on
Indian Sign Language harnessed the capabilities of MediaPipe
Holistic to identify movements and facilitate their conversion
into text or voice, effectively bridging the communication gap
between sign language and other modes of expression [3].
Noteworthy is the emphasis on discerning between static and
dynamic signs, revealing the superior performance of Long
Short-Term Memory (LSTM) models in tracking dynamic
phrases, while CNNs demonstrate proficiency in capturing
static characters.

In parallel, a groundbreaking project introduced a real-time
sign language detection system by synergizing Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs) [4]. The study, titled "Recognizing Sign Language
Gestures from Video Sequences," showcased the synergistic
effectiveness of these networks in real-time recognition,
setting the stage for practical applications in assistive
technology.

Lastly, Research Journal of Engineering and Technology The
proposed system integrates Convolutional Neural Networks
(CNNs) for visual feature extraction and Long Short-Term
Memory (LSTM) networks for understanding the order of
signs [5]. The primary objective was to convert Nepali Sign
Language into written text. The system captures sign images
through a camera and employs a CNN to analyze them. Initial
training concentrated on a limited set of signs (5 and 7), with
better accuracy achieved in the smaller set. Despite promising
outcomes, the study acknowledges constraints, such as a
restricted sign vocabulary and reliance on red gloves during
testing, posing challenges for practical use. In essence, this

research represents a crucial step in utilizing advanced neural
networks to enhance communication between the deaf and
hearing communities in Nepal.

In summation, the collective body of research signifies the
ascendance of deep learning, particularly the integration of
CNNs and LSTMs, in the realm of sign language recognition.
These studies, encompassing diverse aspects from
understanding intricate gestures to real-time detection, depict
a vibrant landscape of advancements that are actively shaping
the future of communication for the hearing-impaired. The
integration of deep learning not only ensures more accurate
and responsive gesture recognition systems but also holds the
promise of seamlessly incorporating sign languages into
mainstream communication technologies.

3. Methodology

3.1 Data Collection

Image datasets were captured using 4 different laptops for 50
labels with an image resolution of 540 x 540 pixels. With the
help of the OpenCV library, the image was captured for about
2500 images per label; in total, 1,25,000 image datasets were
collected. These captured images were not the final dataset,
the aim was to create a dataset containing Hand landmarks
for these images. The sample image of the Captured Image is
shown in Figure 2.

Figure 2: Original Image

3.1.1 Cropping Capture Image

MediaPipe Hands Model used to crop the image, which is
developed by Google to utilizes an ML pipeline consisting of

167



Nepali Sign Language Letter Detection and Finger Spelling Using Mediapipe and CNN

multiple models working together: A palm detection model
that operates on the full image and returns an oriented hand
bounding box and a hand landmark model that operates on
the cropped image region defined by the palm detector and
returns high-fidelity 3D hand keypoints[6] as shown in Figure
3.

The image with resolution 540 x 540 px was passed through
the MediaPipe hand model with parameter static_image
mode = True, min_detection_confidence=0.3, and
max_num_hands=1 to detect the palm area from the captured
image. Before being fed to the Hand landmark model, the
image is converted into RBG format. Using this model, a set of
21 key points representing various landmarks on the hand was
obtained, such as fingertips, knuckles, and the palm. Based on
the Hand Landmark index 9 i.e MIDDLE FINGER MCP and
Hand Landmark index 12 i.e. MIDDLE FINGER TIP, the
original image was cropped. The size of the cropped image
was set to 200 x 200 pixels, determined by the original
dimensions of the image. These cropped images contain only
the image of one palm or hand, which is in BGR form. The
sample of the cropped image is shown in figure 4. This
cropped image contained only the palm area image not a
Hand Keypoints.

Figure 3: Hand Landmark

3.1.2 Hand Landmark Image Drawing

The cropped image was converted into RGB form and fed to
MediaPipe Hand model to extract key points of hand from the
cropped images. Based on the coordinates of the extracted key
points, the coordinates of landmarks were drawn on the plain
black background. The drawn hand landmark image had the
same shape as the cropped images i.e. 200 x 200 pixels. The
landmark image was saved in grayscale format. The sample
image of the Landmark image is shown in figure 5. This Hand
Landmark Image was the final Dataset. Each Character of the
Nepali Alphabet was labeled as shown in figure 6.

Figure 4: Cropped Image Figure 5: Landmark Image

Figure 6: Dataset Label

3.2 Data Pre-Processing

During pre-processing, the dataset image was converted into
a NumPy array and reshaped to 200 x 200 pixels. The pixel
values lie within a range of 0 to 1 in this preprocessed image
data, which comprises a 4D NumPy array.

3.3 Training CNN Model

The training process focused on instructing the model to
identify Nepali Sign Language (NSL) signs from video frames
of gestures. Initially, 125,000 total dataset were divided into
training and validation sets with an 80-20 ratio using the split
folders library i.e. Training set consists of 100,000 dataset and
the Validation or Test set consists of 25,000 dataset.
ImageDataGenerator was employed with an input size of
200*200, class mode set to ‘categorical’, color mode set to
‘grayscale’, and a batch size of 128. This was utilized to convert
the data into the necessary format and normalize the dataset
using the rescale parameter.

In order to include all required layers, the model’s architecture
contained a sequential Keras model. At first, features were
extracted from the video frame using Conv2D layers with a 3x3
kernel and the ‘relu’ activation function. The MaxPooling2D
layers with a 2x2 filter were applied before each Conv2D layer,
allowing for a reduction in both image size and complexity. To
reduce overfitting, dropout layers with a 0.4 dropout rate were
also included. To improve the model’s compatibility, these
three layers were replicated. The 4D data was then
transformed into 1D using a flatten layer. ‘Relu’ activation
functions were used in two Dense layers, with 256 and 64
channels, respectively. The final classification of NSL signs
was given to a Dense layer with 50 output channels and
softmax activation.

To compile the model, the Adam optimizer with a default
learning rate of 0.001 was employed. Other optimizers, such
as SGD with a learning rate of 0.01 and RMSProp with a
learning rate of 0.001, were also tested, but Adam was found to
be the best fit for the model. To find the optimal parameter,
the learning rate of Adam was further revised, with values
ranging from 0.0001, 0.002, and 0.0002, but the default Adam
setting turned out to be the most accurate. For the loss
function, Categorical Cross-Entropy was utilized. Additionally,
accuracy was used as a statistic to evaluate how well the
model predicted NSL signals. The model was then trained
using the fit function, which was used to select the number of
epochs and incorporate the validation set to measure
performance throughout the process. The validation loss was

168



Proceedings of 15th IOE Graduate Conference

analyzed using the EarlyStopping function, which was used to
end the fitting process when suitable. Finally, the accuracy of
the model was evaluated to measure its effectiveness.

3.4 Model Integration with Logic for Finger Spelling

A straightforward approach was developed to combine letters
detected by a CNN model for Nepali finger spelling. Letters
are stored in an array, and once the array is full and contains at
least two letters, they are processed to form a complete word.
The system differentiates between consonants and vowels,
applying specific logic based on their combinations.
Vowel-vowel pairs are simply joined, while consonant-vowel
combinations involve replacing the vowel with its
corresponding symbol as shown in figure 7 and joining it with
the consonant. In both vowel-consonant and
consonant-consonant combinations, the initial part (or the
first letter in the array) remains unchanged. The process then
focuses on modifying the second consonant based on the
following letter (third letter in the array for any of the above
combinations). This logic ensures proper Nepali word
formation by considering the unique characteristics of
consonant-vowel interactions in the language.

Figure 7: Vowel and Their Symbol

4. Results and Discussion

4.1 Result

4.1.1 Accuracy and Loss Curve

The accuracy curve shown in figure 8 rapidly increases to
nearly 100%, indicating how well the model fits the training set
of data. However, the validation accuracy curve peaks around
90% after an initial sharp rise. This indicates that the model
does not get any more accurate with more training epochs,
but it does generalize to unknown data very well initially.

Figure 8: Accuracy Curve Figure 9: Loss Curve

Similarly, the Loss Curve shown in figure 9 drops sharply to
near zero within the first few epochs. This confirms the model
fits the training data extremely well after initial learning.
However, the validation loss curve initially decreases and then
peaks at a higher value compared to the training loss. This
indicates the model is being overfitted to the training data.
This limits the model’s ability to generalize and perform well
on new, unseen data from the validation set.

4.1.2 Classification Table

precision recall f1-score support
0 0.98 1.00 0.99 500
1 0.97 0.99 0.98 500
2 0.99 0.93 0.96 500
3 0.99 1.00 0.99 500
4 1.00 0.99 0.99 500
5 1.00 1.00 1.00 500
6 1.00 1.00 1.00 500
7 1.00 1.00 1.00 500
8 1.00 0.99 0.99 500
9 0.99 0.99 0.99 500

10 0.98 1.00 0.99 500
11 0.99 1.00 1.00 500
12 1.00 1.00 1.00 500
13 0.99 0.98 0.98 500
14 0.98 0.98 0.98 500
15 0.99 0.98 0.99 500
16 0.99 1.00 1.00 500
17 0.98 1.00 0.99 500
18 1.00 0.99 0.99 500
19 0.96 0.99 0.97 500
20 1.00 1.00 1.00 500
21 0.97 1.00 0.99 500
22 0.99 1.00 0.99 500
23 1.00 1.00 1.00 500
24 0.99 0.96 0.98 500
25 1.00 0.99 0.99 500
26 1.00 1.00 1.00 500
27 0.99 0.99 0.99 500
28 1.00 1.00 1.00 500
29 0.97 0.99 0.98 500
30 0.99 0.99 0.99 500
31 1.00 1.00 1.00 500
32 1.00 0.99 0.99 500
33 1.00 1.00 1.00 500
34 1.00 1.00 1.00 500
35 1.00 0.97 0.98 500
36 0.99 1.00 0.99 500
37 1.00 1.00 1.00 500
38 0.97 1.00 0.99 500
39 0.98 1.00 0.99 500
40 1.00 1.00 1.00 500
41 1.00 1.00 1.00 500
42 1.00 1.00 1.00 500
43 1.00 0.99 1.00 500
44 1.00 1.00 1.00 500
45 1.00 0.97 0.98 500
46 0.99 0.98 0.99 500
47 1.00 1.00 1.00 500
48 0.98 0.97 0.97 500
49 0.98 0.98 0.98 500

accuracy 0.99 25000
macro avg 0.99 0.99 0.99 25000

weighted avg 0.99 0.99 0.99 25000

A classification report is a comprehensive summary of the
performance of a classification algorithm on a dataset. It
provides various metrics for each class, helping to evaluate the
model’s precision, recall, F1 score, and support. The
classification Table of our model is shown in the above Table.

169



Nepali Sign Language Letter Detection and Finger Spelling Using Mediapipe and CNN

4.1.3 Output

Figure 10: Hand Landmark Detection Steps

Figure 11: Output

Figure 11 shows the real time prediction of a letter and joining
of each letter to form a word at last.

Figure 12: Success Case

Hand gesture is detected and landmark is successfully drawn,
but only when the hand is shown to the camera at the right
angle, at about 60 cm from the camera, the hand must be held
stable, and the signs must only be given according to prompts
displayed on the screen.

Figure 13: Change in
Angle

Figure 14: Low Light

Hand might not be detected properly if it’s too close to the
camera or if it’s not facing directly towards the camera.
Changes in lighting can also affect detection. In case of wrong
hand gesture input, it might give the wrong output.

5. Conclusion

The majority of the deaf community faces deprivation of basic
services due to communication barriers with the hearing
community. This paper introduced a model designed to
predict Nepali Sign language characters. Mediapipe and
OpenCV were used for Real-time data collection.
Model-building strategies like transfer learning and different
neural network architectures were examined and a simple
CNN model which contained ConV2D, MaxPolling layer,
Flatten layer, and Dense layer, was ultimately chosen.
Optimizers like ‘Adam’, ‘RMSProp’, and ‘SGD’ were examined,
leading to the selection of Adam optimizers. A graph was
analyzed by changing the learning rate to 0.0001, 0.002, 0.0002,
etc. However, the default ‘Adam’ worked accurately for the
model. At first, Relu activation function was used in all layers
including the output Dense layer. The Accuracy and Loss
curve were steady. Finally Softmax activation function was
used which provided the appropriate graph with accuray of
99%Ṫhe model’s advancement to produce words directly
instead of only characters is a crucial step toward its future
development. The model needs to be improved for real-time
processing speed in order for its use to be expanded beyond
primary school students. Furthermore, adding extra features
like captioning for sign language videos can significantly
improve inclusion and accessibility. All of these improvements
work together to improve the model’s performance and
increase the range of educational levels and communication
modalities in which it can be used.

Acknowledgments

The authors extend their heartfelt gratitude to the Department
of Electronics and Computer Engineering, Purwanchal
Campus for the unwavering support, guidance, and
encouragement.

References

[1] S. Ligal and D. S. Baral. Nepali sign language gesture
recognition using deep learning. In Proceedings of the 12th
IOE Graduate Conference, volume 12, October 2022.

[2] Sarfaraz Masood, Harish Chandra Thuwal, and Adhyan
Srivastava. American sign language character recognition
using convolution neural network. In Smart Computing
and Informatics, pages 403–412. Springer, 2018.

[3] Kaushal Goyal and Dr. Velmathi G. Indian sign language
recognition using mediapipe holistic. In Proceedings of the
VIT, Chennai, India, 2023.

[4] Sarfaraz Masood, Adhyan Srivastava, Harish Chandra
Thuwal, and Musheer Ahmad. Real-time sign language
gesture (word) recognition from video sequences using
cnn and rnn. In Intelligent Engineering Informatics, pages
623–632. Springer, 2018.

[5] D. Mali, R. Mali, S. Sipai, and S. P. Pandey. Nepali sign
language translation using convolutional neural network.
In 1st KEC Conference Proceedings, Volume I, September 27
2018.

[6] MediaPipe. Mediapipe hands documentation, 2024.

170


	Introduction
	Literature Review
	Methodology
	Data Collection
	Cropping Capture Image
	Hand Landmark Image Drawing

	Data Pre-Processing
	Training CNN Model
	Model Integration with Logic for Finger Spelling

	Results and Discussion
	Result
	Accuracy and Loss Curve
	Classification Table
	Output


	Conclusion
	Acknowledgments
	References

