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Abstract
COVID-19 has significant worldwide effects in the areas of social, medical, and economy.Because of the severe effects of a disease
that causes lung damage and increases susceptibility to lung infections in the population, the World Health Organization declared a
Public Health Emergency of International Concern.In order to prioritize life-saving care, it is imperative to identify and evaluate
the severity of COVID-19 infection in relation to other respiratory illnesses. Specialists may deploy resources more effectively
and help patients in emergencies sooner when they do effective evaluations.In expert-evaluated COVID-19 CT lung images,
ground glass opacity is frequently observed. Innovative methods for medical image analysis might be made possible by quantum
computing’s promise to explore quantum machine learning (QML).In this study,the features are extracted by using quantum ,with the
abundance of data, machine learning benefits from enhanced speed and computational complexity to handle larger weight matrices
for improving performance.Exploring quantum techniques for severity classification in machine learning using a Quantum-Classical
hybrid model on varied input image sizes (28x28, 32x32, 64x64) running on a simulator.The patient’s CT images are classified by
the Quantum-Classical model into three severity classes: Critical, Severe, and Moderate. The paper demonstrates that a hybrid
model outperforms CNN, achieving 96.82% accuracy with smaller 32x32 images and 3075 trainable parameters compared to
VGG-19, which achieves 85.97% accuracy with larger 64x64 images and 262,659 trainable parameters.

Keywords
COVID-19, Severity, Chest CT images, Accuracy, ROC, Quantum-Classical

1. Introduction

COVID-19, caused by SARS-CoV-2, emerged in late 2019,
marking the seventh coronavirus to infect humans and
triggering a global health emergency [1]. As of April 8, 2024,
Worldometers global real-time statistics show that there were
704,686,750 confirmed COVID-19 cases worldwide, surpassing
the 704.68 million threshold. 7,009,958 fatalities overall, or
7.009 million deaths overall [2].Coronavirus spreads quickly
and is especially harmful to people with pre-existing medical
conditions. There is an increasing number of people affected
by the post-COVID-19 condition. People who are infected
with coronaviruses have difficulty breathing. Early
identification of COVID-19 infection and assessment of its
severity are therefore essential. By doing this, the disease’s
death and spread rates may be reduced.CT imaging can be
used to diagnose COVID-19 ,however manual image
interpretation is time-consuming and prone to human
error.In order to effectively manage patients, AI-based image
processing makes it possible to quickly and accurately
diagnose COVID-19 from CT images. Disease monitoring and
severity analysis are aided by its ability to extract complex and
varied patterns from healthcare images. Treatment options
might be guided by the results of sequential CT imaging,
which helps to identify degree of lungs involvement. To
monitor the development of the disease and provide
treatment, routine follow-up scans are advised for COVID-19
patients [3, 4].

With the development of the idea of quantum-classical (QC)
and its advancements in the field of machine learning (ML)

(i.e., learning capacity, run time, and learning efficiency), the
QC field has demonstrated its important role in intractable
problems with classical counterparts through quantum
supremacy. Additionally, QC has proven to have a significant
impact on machine learning with regard to near-term
quantum computers [5]. In order to overcome these obstacles
and enhance accuracy of models on limited datasets,
quantum computing is becoming a popular computational
technique [6]. Quantum models take advantage of the
computer power provided by quantum mechanics to expedite
drug research and help to find treatments for newly
developing viruses more quickly. Traffic management is
revolutionized by integrating quantum algorithms with
classical traffic data. This allows for real-time optimization of
signal timing to minimize traffic and boost transit
efficiency.There is enormous potential for a wide range of
applications with current breakthroughs in Quantum
Computing, which integrate quantum and conventional
computing. The current topic, which relates to the
intersection of computer technology and quantum physics,
uses quantum bits to give more computational capability than
traditional models, particularly in machine learning [7].

Shor’s method, achieving quantum supremacy, enables rapid
factorization of large numbers, a task impractical for classical
computers. Grover’s algorithm utilizes quantum computing to
search datasets efficiently, achieving O(

p
N ) time complexity

compared to traditional methods requiring at least N/2 steps
[8, 9].Superposition and entanglement are used by quantum
computing to outperform conventional counterparts.
Advanced quantum storage relies on quantum bits, or qubits,
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which are different from classical bits that are limited to either
0 or 1. Qubits can exist in a simultaneous superposition of
both states 0 and 1 [10]. Hybrid quantum-classical models use
the advantages of both methods to overcome the
shortcomings of quantum algorithms for classification. This
results in enhanced performance. Compared to
high-resolution image tasks performed by CNNs, challenges
such as fluctuating circuit depth, resolution and limited qubits
on big datasets are reduced. In order to optimize COVID-19
severity classification of chest CT images across various
classes, this research presents a unique Quantum convolution
layer within a hybrid model, retaining batch sizes and
quantum depths for optimal parameter adjustment.

Using textural data , such as ground-glass opacity (GGO) in
the initial phase and lung consolidation taken from Computed
Tomography (CT) slices, automatically categorize COVID-19
patients into three severity levels: mild, moderate, and severe
[3].A two-step process involves first detecting COVID-19 and
then classifying the severity into High, Moderate, or Low
categories using Cubic Support Vector Machine (SVM)[11].
The method for identifying high-risk patients that was
evaluated using data that was available to the public ,achieved
92% accuracy, suggesting that patient must get attention.A
hybrid Quantum-Classical convolution neural network with
low resolution, few trainable parameters, and a small number
of training images can classify images with 93.48% accuracy
[7].In order to identify COVID-19 patients using chest X-ray
images, a hybrid Quantum-Classical convolutional neural
network (HQ-CNN) model is proposed. It uses random
quantum circuits as its foundation. The accuracy of low
resolution images in binary and multiclass settings is 93.3%
and 82.2%, respectively [5].Using many random quantum
circuits, quanvolutional layers process the MNIST dataset.
Meaningful characteristics for classification are produced via
quantum transformations, which call for small quantum
circuits with negligible to no error correction[12].A quantum
machine learning technique classified full-image
mammograms into benign and malignant groups with an 84%
accuracy rate. Results from tests on simulators and quantum
devices were compared with those from classical devices[10].

2. Theoretical Background

2.1 Principles of Quantum Computing

1. Qubits:In quantum computing, a qubit represents a bit of
data and can exist in states |0〉 and |1〉 simultaneously, a
phenomenon known as quantum superposition. Qubits,
the fundamental units, utilize the two energy levels of an
atom, with an excited state representing |1〉 and a ground
state representing |0〉. These states are often depicted using
bra-ket notation, also known as Dirac notation, allowing
any arbitrary qubit state to be represented in a concise and
standardized manner.

|ψ〉 ≥α|0〉+β|1〉 (1)

The overall state of a qubit can be visualized using Bloch
spheres, representing quantum states as points on a unit

sphere[13].Overall state of a qubit is represented as:

|ψ〉 = cos

(
θ

2

)
|0〉+e jψ sin

(
θ

2

)
|1〉 (2)

Where θ and ψ lie within the entire sphere without any
repetitions, i.e., θ ∈ [0,π] and ψ ∈ [0,2π]. Here, θ represents
latitude, and ψ represents longitude [7].

2. Quantum Entanglement:Entanglement enables quantum
systems to exhibit correlated states within a superposition,
allowing two particles to be linked and influence each other
without direct interaction, facilitated by multi-qubit gates
like the Controlled Not (C-NOT).

3. Quantum Gates:Out of the ten quantum gates that are
available, the seven that are most frequently used in
quantum computing research are used to interact with
both single and multiple qubits.

• Hadamard Gate:The Hadamard gate is a sort of single-
qubit gate that is used to convert base-state qubits
into superposition states, which are represented by
the following matrix:

H = 1p
2

[
1 1
1 −1

]
(3)

• Rotation Gates:Qubit states may be manipulated by
rotating them about the basic axes, which are
represented by the general formula for rotation gates
in quantum computing as RY, RX, and RZ for rotations
around the Y, X, and Z axes, respectively.Given is the
rotation gate’s generic expression:

R(θ,φ) =
[

cos( θ2 ) −i e−iθ sin( θ2 )
−i e iθ sin( θ2 ) cos( θ2 )

]
(4)

• Pauli Gates:Pauli matrices are a collection of 2 × 2
complex Hermitian and unitary matrices used as
gates to manipulate quantum states |ψ〉 orientations
in the X, Y, or Z directions.

Pauli-X gate :The X gate in quantum computing
behaves similarly to a classical NOT operation by
interchanging the states of the computational basis
.In order for |0〉 to become |1〉 and |1〉 to become |0〉,
In matrix form, Pauli X-gate is presented as:

X =
[

0 1
1 0

]

X = |0〉〈1|+ |1〉〈0| (5)

X |0〉 = |1〉
X |1〉 = |0〉

Pauli-Y gate (Y gate) : In matrix form, Pauli Y-gate is
presented as:

Y =
[

0 −i
i 0

]

Y = i |1〉〈0|− i |0〉〈1| (6)
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Y = i |1〉〈0|− i |0〉〈1| (7)

Y |0〉 =+i |1〉
Y |1〉 =−i |0〉

In addition to changing the qubits’ state, this gate
reverses their phase. Pauli-Z gate (Z gate) : In matrix
form, Pauli Z-gate is presented as:

Z =
[

1 0
0 −1

]

Z = |0〉〈0|− |1〉〈1| (8)

Z |0〉 =+|0〉
Z |1〉 =−|1〉

Z-gates reverse the phase between the states |0〉 and
|1〉 with respect to the computational basis.

4. Quantum Measurement:Since quantum states change into
classical ones during measurements, quantum computers
are probabilistic devices that require numerous
observations to obtain exact results[13].This work makes
use of a parameterized quantum circuit for quantum
convolution and measures quantum states using the Pauli
Z gate.

2.2 Quantum Deep Learning

The development of quantum deep learning and
quantum-inspired approaches, investigating the possibilities
of algorithms such as Grover’s and Shor’s in machine learning,
is a result of recent developments in deep learning and
quantum computing. In addition to suggesting other
topologies and taking into consideration quantum circuits as
an alternative to intricate CNN architectures, researchers are
exploring the potential applications of quantum computing in
machine learning and deep learning.

2.3 Fully Connected Layer

Fully connected layers, included in both deep learning models
and conventional neural networks, are used after convolution
layer outputs have been flattened. In these layers, every
neuron is linked to every other neuron in the layer above.
These layers incorporate linear input components and utilize
activation functions to incorporate non-linearity,crucial for
learning complex patterns.

A fully connected layer’s functioning can be mathematically
described as:

Output = Activation(Weight · Input+Bias) (9)

Here:

Input : The input features from the previous layer

Weight : Learnable connection parameters

Bias : The bias terms for each neuron in the layer

Activation : The activation function

2.4 Output Layer

The Softmax activation function assigns a probability to each
class depending on its score in relation to the other classes,
transforming a vector of scores into a probability distribution
over multiple classes.

σ(z) j = ez j∑K
k=1 ezk

for j = 1, . . . ,K (10)

3. Methodology

Quantum-Classical framework is used in this methodology to
conduct severity classification.

Figure 1: System Block Diagram

3.1 Dataset

The COVID-19 CT scan dataset was obtained from many
sources, including Kaggle [14, 15] and Radiopaedia [16], for
which different classes of severity of dataset were acquired.
Researchers, doctors, and data scientists may now access a
number of datasets that have been provided specifically for
COVID-19 research. 120 individuals had raw CT scans in
total.To complete tasks, nii formate are captured and
transformed into 2D images. In order to classify severity, a
total of 3975 CT images are used. The Python splitfolders
package is used for train-test splits, and the split ratio for
training and testing the quantum-classical model is 70:30.
Additionally, to increase the number of datasets for classical
deep learning, 11,050 CT images are used, with training and
validation divided into 75:25.

Table 1: Dataset used for Severity classification

Class Training Testing Total
Critical 942 405 1347
Severe 947 407 1354

Moderate 891 383 1274
Total 2780 1195 3975

Various degrees of severity are correlated with the percentage
of the lung lesion area.In other reference works, patient
severity was classified as either high, moderate, or low, or as
either severe or non-severe; however, patient severity is
classified as either moderate, severe, or critical. Ground glass
opacities, in a moderate instance, 25–50 % pulmonary
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Figure 2: CT slices of Moderate,Severe and Critical COVID-19
cases

parenchymal involvement.When Ground Glass opacities are
severe 50–75 % of pulmonary parenchymal involvement is
seen with pulmonary consolidation, and ≥ 75% of pulmonary
parenchymal involvement is seen in critical cases with
disseminated GGO with consolidation.

3.2 System Methodology

This work emphasizes quantum convolution for feature
extraction and uses a stripe-based integration strategy to
alleviate noise-free qubit limitations. The hybrid technique
integrates classical fully connected layers with parameterized
quantum circuits to improve image classification by merging
quantum and classical computing models.

Figure 3: Hybrid Quantum-Classical Model

Figure 4: Four Qubit Quantum-Convolution Model

The following is a list of steps that this hybrid

quantum-classical model goes through.

1. The dataset images are reduced in size to 28*28, 32*32,
and 64*64 pixels, respectively, based on the
requirements of the experiment. In the preprocessing
stage, the training dataset was standardized using the
mean and standard deviation of the training dataset to
expedite the convergence of the training model.In this
case, the standard deviation is [0.4143, 0.4143, 0.4143],
while the mean is [0.5160, 0.5160, 0.5160].

2. The quantum convolutional layer collects 2x2 strips of
input images, yielding identical-sized quantum qubits
initially in the base state. Parameterized quantum
circuits, utilizing CNOT gates and gates like Rz, Rx, Ry,
along with Hadamard gates for superposition, facilitate
unitary transformations, followed by correlation-based
measurements to yield scalar outputs.

3. Via pooling, lowering the feature maps spatial
dimensionality. When just one qubit out of the four is
measured, qubit selection with classical
post-processing pooling is used.Qubit, can be randomly
selected for each iteration of the calculation.Classical
post-processing methods are employed to evaluate
measurement outcomes, get relevant data, and enhance
the information obtained from the random qubit
through feature extraction and dimensionality
reduction.

4. Using non-linear activation functions and flattening
into a 1D array, post-processing in classical approaches
decreases computing cost, enhances feature translation
invariance, and manages overfitting.After that, it
flattens and moves through the fully connected layer,
where it is processed further. Since it is a component of
a classical neural network, additional classical neural
network operations are also carried out.The output
layer uses probabilities to determine class classification
and makes use of the softmax activation function.

5. The fully connected layer’s weights and the trainable
quantum filter’s parameters are adusted by
implementing the Adam optimizer and Categorical
Cross Entropy loss functions.Subsequently. The
classification process then uses the ultimate stable
model.

3.3 Evaluation Index

Effectiveness appears to be a determining factor in every
machine learning model’s prediction accuracy.The efficacy is
evaluated from the proposed model using the following
performance evaluation metrics.

Accuracy = (TP+TN)

(TP+TN+FP+FN)
(11)

Specificity = TN

(TN+FP)
(12)
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Precision = (TP)

(TP+FP)
(13)

Recall = (TP)

(TP+FN)
(14)

F-measure = 2× (precision×Recall)

(Precision+Recall)
(15)

Where, TP (True Positive), TN (True Negative), FN (False
Negative), and FP (False Positive) represents as COVID-19
severity correctly classify.

4. Result and Discussion

4.1 Experimental Setup

A hybrid Quantum-Classical model based on Computed
Tomography (CT) scans is utilized to classify COVID-19
severity using PennyLane and PyTorch. TPU runtime is used
to run the model on Google Colab. A qubit simulator is
utilized in its place since a quantum computer is not
feasible.The quantum variational circuit is drawn using the
Qiskit framework.This experiment was carried out in the
Google Colab Pro Plus edition, which has a runtime of up to 24
hours and has background execution capabilities that neither
Google Colab Free nor Google Colab Pro do.The following are
Google Colab Pro Plus’s features:- Resources guarantee: High
Percentage, Processor: 52 GB of RAM, GPU (K80, T4, and P100)
and TPU, Run Time: 24 hours ,Targeted Class
:High-performance computing user.

A hybrid Quantum-Classical model is used to accomplish the
classification problem.In hybrid Quantum-Classical models,
the number of quantum depths used to train the model
remains constant.The model’s hyper-parameters consist of an
epoch-number varying learning rate of 0.0001, a 64-batch size,
and an Adam optimizer with a categorical cross-entropy loss
function.In this task, these models are able to classify the
chest CT images severity into three categories: Critical, Severe,
and Moderate.Table 1 shows the data used for classification.
The entire data for classification is split in a ratio of 70:30, with
2780 pictures used for training and 1195 images used for
testing. In the same way, a split of 75:25 is employed for the
total 11050 photos used for deep learning comparison.

4.2 Comparison of Accuracy curve obtains from
Training Vs Validation of different architectures

For both models, the training and validation datasets contain
images from three separate classes. For VGG-19, batch size
32 is taken into consideration, while for quantum-classical,
batch size is 64 . Different sizes of images have been used in
quantum-classical training with varying epoch numbers to get
varying accuracy values with varying run times using the same
dataset.After 10 epoches, learning rate becomes adaptive.In
a similar manner, VGG-19 achieves its accuracy at 64 by 64
image size and 150 epoch number.

Figure 5: Training Vs Validation: Using an image size of 28*28,
the Quantum-Classical architecture is run for 11 epochs, and

Table 2: Training Vs Validation Accuracy of models

Model Img. size Epo. Param. Run(Min) Acc.
Q-C 28*28 11 2355 812 95.31 %
Q-C 32*32 11 3075 1295 96.82 %
Q-C 64*64 4 12291 1234 92.04 %

VGG-19 64*64 150 262659 16 85.97 %

the graph validates an accuracy of 95.31%. Figure 6: Training
Vs Validation runs using a 32*32 image size across 11 epochs
utilizing a Quantum-Classical architecture. The graph
validates an accuracy of 96.82%.

Figure 5: Training Vs Validation Accuracy based on
Quantum-Classical model of 28*28

Figure 6: Training Vs Validation Accuracy based on
Quantum-Classical model of 32*32

Figure 7: Training Vs Validation runs using a 64*64 image size
across 4 epochs utilizing a Quantum-Classical architecture; the
graph validates an accuracy of 92.04%. Figure 8: Training Vs
Validation runs Using a 64*64 image and 150 epochs of VGG-19
architecture, the graph validates an accuracy of 85.97%.

4.3 Comparison of Loss curve obtains from Training
Vs Validation of different architectures

Figure 9: Training Vs Validation runs using a 28*28 image size
across 11 epochs utilizing a Quantum-Classical architecture,
the graph validates the loss of 16.93%. Figure 10: Training Vs
Validation: Using a 32*32 image across 11 epochs of Quantum-
Classical architecture, the graph validates the loss of 15.10%.

Figure 11 :Training Vs Validation run using image size 64*64 for
4 epochs utilizing Quantum-Classical architecture , the graph
validate the loss of 24.41%. Figure 12: Training Vs Validation
run using image size 64*64 for 150 epochs utilizing VGG-19
architecture, the graph validate the loss of 41.00%.
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Figure 7: Training Vs Validation Accuracy based on
Quantum-Classical model of 64*64

Figure 8: Training Vs Validation Accuracy based on VGG-19
model of 64*64

Figure 9: Training Vs Validation Loss based on
Quantum-Classical model of image 28*28

Figure 10: Training Vs Validation Loss based on
Quantum-Classical model of image 32*32

Figure 11: Training Vs Validation Loss based on
Quantum-Classical model of of image size 64*64

Figure 12: Training Vs Validation Loss based on VGG-19
model of image size 64*64

4.4 Comparison of ROC curve of different
architectures

Figure 13 shows a ROC curve using a Quantum-Classical
architecture run for 11 epochs, utilizing a 28 x 28 image size
with an AUC score of 1.0 for critical, 0.99 for severe, and 0.99
for moderate. Figure 14 shows a ROC curve using a
Quantum-Classical architecture that was ran for 11 epochs
utilizing a 32 by 32 image size with an AUC score of 1.0 for
critical, 1.0 for severe, and 0.99 for moderate.

Figure 13: ROC curve based on Quantum-Classical model
using image size of 28*28

Figure 15 shows a ROC curve using a Quantum-Classical
architecture run for 4 epochs, utilizing a 64 * 64 image size
with an AUC score of 0.95 for critical, 0.92 for severe, and 0.92
for moderate. Figure 16 shows a ROC curve using a VGG-19
architecture that was ran for 150 epochs utilizing a 64 * 64
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Figure 14: ROC curve based on Quantum-Classical model
using image size of 32*32

image size with an AUC score of 0.92 for critical, 0.84 for
severe, and 0.92 for moderate.

Figure 15: ROC curve based on Quantum-Classical model
using image size of 64*64

Figure 16: ROC curve based on VGG-19 model using image
size of 64*64

4.5 Comparison of Confusion Matrix of different
architectures

Figure 17 shows Confusion Matrix, run for 11 epochs with
Quantum-Classical architecture using image size 28*28 whose
model accuracy is 95.31% and loss is 16.93%.Figure 18 shows
Confusion Matrix, run for 11 epochs with Quantum-Classical
architecture using image size 32*32 whose model accuracy is
96.82% and loss is 15.10%.

Figure 17: Confusion matrix based on Quantum-Classical
model using image size of 28*28

Figure 18: Confusion matrix based on Quantum-Classical
model using image size of 32*32

Figure 19 shows Confusion Matrix, run for 4 epochs with
Quantum-Classical architecture using image size 64*64 whose
model accuracy is 92.04% and loss is 24.41%.Figure 20 shows
Confusion Matrix, run for 150 epochs with VGG-19
architecture whose model accuracy is 85.97% and loss is
41.00%.

4.6 Discussion

The experiment compares Quantum-Classical and VGG-19
models for severity classification using a dataset of 3975
images. Quantum-Classical achieves accuracy rates of 95.31%,
96.82%, and 92.04% for image sizes of 28*28, 32*32, and 64*64,
respectively, while VGG-19 achieves 85.97% accuracy. A
Quantum-Classical system is shown to be able to learn its
fundamental characteristics and representations of objects
and patterns seen in higher-resolution images can still be
captured by features taken from low-resolution images. This
shows that the concepts of quantum advantage, robustness,
and interpolation. Therefore, the representations learned on
low-resolution images may generalize to larger images. To
solve scaling issues and verify applicability in real-world
circumstances, validation on larger images is essential.
Although quantum computing has only been explored on
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Figure 19: Confusion matrix based on Quantum-Classical
model using image size of 64*64

Figure 20: Confusion matrix based on VGG-19 model using
image size of 64*64

low-resolution images, it has potential advantages for image
processing applications. Its capacity to take use of quantum
concepts like as superposition and entanglement can result in
exponential acceleration in specific tasks, indicating improved
performance for pattern recognition and image processing
even in the case of low-resolution inputs. However, further
research and development are needed to fully harness its
capabilities for higher-resolution images. To model quantum
circuits with the Cirq simulator, PennyLane was utilized as an
interface. With Cirq serving as the backend for simulation or
execution, PennyLane offers a higher-level interface for
activities related to quantum computing.Testing with a single
filter across different input sizes evaluates their impact on
execution time and performance. Uniformly, one filter was
applied for all input sizes to assess consistency.

The model’s parameters affected the overall complexity,
increasing in direct proportion to the amount of the input.Due
to a significant increase in execution time for the 64*64 input
size, the model was trained for a restricted number of epochs
in order to appropriately manage computing resources.The
classical model needed less time to train than the quantum
model. Because the local simulator had to imitate the
quantum model, this prolonged the training duration. When
one simulates a quantum computer in a classical
environment, the level of complexity increases exponentially.
The larger image, the longer the training period and the more

parameters used.

VGG-19’s deep structure and large number of parameters
make it prone to overfitting when used for comparison with
small image sizes, such as 32*32. There are spatial errors,
indicating that it’s not the best for such low resolution images .
At 64*64 image size, VGG-19 shows a large loss and just a slight
gain in accuracy, suggesting performance constraints at
smaller dimensions.The shortcoming of the proposed
model,near-term quantum devices are employed due to their
capacity for small quantum circuits, aligning with available
qubit. Quantum kernels in image processing induce
resolution downsampling while maintaining image contours,
contrasting classical convolution layers mainly quantum
model perform on MNIST dataset .The HQ Hybrid Model’s
small design makes it ineffective for handling massive
datasets.

Figure 21: Comparison of Classification reports of
quantum-classical and VGG-19

Comparison of similar works

Table 3: Different reference paper with similar works

Paper Dataset Method ACC. AUC.

[3]
956

samples
Random

Forest (RF)
90.95% -

[4]
176

samples
Random

Forest (RF)
87.5% -

[6]
825

samples
QTL 84% -

[7]
6426

samples
Hybrid

QC
93.48% -

[17]
8768

samples
CQ 99% -

Proposed
3975

samples
Hybrid

QC

95.31% (28*28)
96.82% (32*32)
92.04% (64*64)

0.993
0.997
0.936

Table 3 presents a comparison of the Severity Classification
based on similar research and many reference publications. In
order to reach 84 % accuracy, V. Azevedo et al. [10] employed
825 CT scans for their model QTL. With 6426 X-ray images, the
Hybrid QC model [7] was applied in given article, producing an
accuracy of 93.48%. Umer et al. [17] used Classical Quantum
to achieve 99% accuracy on 8,768 sample images.
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5. Conclusion and Future work

This work presents a novel approach to the classification of
lungs severity CT scans using a hybrid Quantum-Classical
model, separating COVID-19 severity into three groups:
moderate, severe, and critical. With the use of quantum
convolution filters on 28*28, 32*32, and 64*64 resolutions of
chest CT images, the research proposes a COVID-19 severity
quantification model for timely medical assessments. Despite
CNNs’ effectiveness as feature extractors, the hybrid
Quantum-Classical model outperforms them with an
accuracy of 96.82% for a 32*32 input and 2*2 quantum filter.
However, testing with a 64*64 image size yields a little lower
accuracy of 92.04% due to execution time restrictions. More
image datasets and higher resolutions may be able to increase
accuracy even more, establishing a proportionate relationship
between computing efficiency and model performance.
Quantum convolution with a higher dimensional quantum
filter applied. While some of the hyperparameters in this
study may have been adjusted, most of them were left
unchanged. Furthermore, the creation of intricate hybrid
Quantum-Classical variational algorithms may benefit from
this paradigm in the future. In future work on improving the
method and work on Imagenet like dataset and improve in
architecture to handle large datasets. In the future, this work
may be further investigated to distinguish between various
diseases and the lung region that is impacted.
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