
Proceedings of 15th IOE Graduate Conference
Peer Reviewed

Year: 2024 Month: May Volume: 15
ISSN: 2350-8914 (Online), 2350-8906 (Print)

Mechanical Automation with Vision: A Design for Rubik’s Cube Solver

Abhinav Chalise a, Nimesh Gopal Pradhan b, Nishan Khanal c,
Prashant Raj Bista d, Dinesh Baniya Kshatri e

a, b, c, d, e Department of Electronics and Computer Engineering, Thapathali Campus, IOE, Tribhuvan University, Nepal
 a chalisezabhinav@gmail.com, b nimeshgpradhan@gmail.com, c khanalnishan28@gmail.com,

dprashantbista18@gmail.com, e dinesh@ioe.edu.np

Abstract
The core mechanical system is built around three stepper motors for physical manipulation, a microcontroller for hardware control,
a camera and YOLO detection model for real-time cube state detection. A significant software component is the development
of a user-friendly graphical user interface (GUI) designed in Unity. The initial state after detection from real-time YOLOv8 model
(Precision 0.98443, Recall 0.98419, Box Loss 0.42051, Class Loss 0.2611) is virtualized on GUI. To get the solution, the system
employs the Kociemba’s algorithm while physical manipulation with a single degree of freedom is done by combination of stepper
motors’ interaction with the cube achieving the average solving time of ∼2.2 minutes.

Keywords
Kociemba, Mechanical system, Rubik’s Cube, Stepper Motors, YOLO

1. Introduction

The Rubik’s Cube, a 3-D combination puzzle, created in 1974 by
Ernő Rubik offers approximately 43 quintillion possible states
and presents a significant challenge in pattern recognition and
problem-solving although the upper bound to solve the cube
was proved to be 20 by Rokicki, et al. [1] fascinating people
including researchers, engineers and enthusiasts, known as
‘cubers’, that are actively engaging in competitions, striving
to achieve record-breaking times and the fewest move count
(FMC) in solving the puzzle.

The challenge of mechanically solving a scrambled Rubik’s
Cube has also captured the imagination of innovators and
engineers. Various approaches have been attempted, ranging
from the development of robotic hands that mimic human
movements to the design of specialized cubes that can be
rapidly manipulated by machines. These mechanical
solutions represent a fascinating intersection of robotics,
mechatronics, and computer science, which sets the stage for
the development of the ‘Mechanical Automation with Vision:
A Design for Rubik’s Cube Solver’, which aims to combine
advanced algorithmic processing with a physical mechanism
to autonomously solve the Rubik’s Cube.

This research focused on simplicity while maintaining
efficiency; reducing the number of motors and overall costs
while maintaining the ability to solve the Rubik’s Cube within
a sensible timeframe. The project’s key contributions include:

1. Development of a Simple Solver that can be easily
assembled or created by individuals without needing
over-engineered solutions.

2. The system features an interactive GUI that integrates
physical manipulation of a Rubik’s Cube and uses
advanced object detection for precise component
identification.

2. Related Works

This provides the summary of some of the related works done
to tackle the challenge of solving the cube. "The Design of
Rubik’s Cube Robot" presents a mechatronics system
designed to solve scrambled Rubik’s Cubes including color
recognition of each cube face using an industrial CCD camera,
followed by the implementation of a two-phase algorithm for
cube recovery. Pneumatic manipulators driven by pressurized
air, controllable via an electrical relay array, are used to
manipulate the cube. [2]

"Advanced Rubik’s Cube Algorithmic Solver" utilized a
combination of a PC and Arduino Due micro-controller board
for processing. Four webcams were strategically placed to
capture cube sides, with image processing done via a C#
desktop application using color image segmentation to
identify the HSV mask of the cube. Kociemba’s Algorithm,
along with the blindfolded method and Old Pochmann, M2,
were employed to solve the cube. Six actuators rotated cube
faces according to the chosen solution. Webcams transmitted
cube side data to the PC, which processed images and
generated solutions based on the algorithms. These solutions
were then sent to Arduino Due via serial interface, which
controlled six stepper motors to rotate cube faces. [3]

"Solving the Rubik’s Cube with Deep Reinforcement Learning
and Search" introduces DeepCubeA, a system that merges
deep learning with classical reinforcement learning and
pathfinding techniques to solve the Rubik’s Cube and similar
combinatorial puzzles. DeepCubeA employs approximate
value iteration to train a deep neural network, with the goal of
approximating the cost-to-reach the goal state. The paper
solely focuses on simulating the solving process of the cube
and does not involve any hardware implementation. [4]

In the paper titled "Rubik’s Cube Solver: A Review," a setup
comprising six NEMA 17 bipolar stepper motors, L298 motor
driver, and Raspberry Pi was utilized. The paper compared

Pages: 150 – 156



Proceedings of 15th IOE Graduate Conference

various cube-solving algorithms, including Thistlethwaite’s
algorithm, Kociemba’s Algorithm, and Korf’s Algorithm. It
concluded that Korf’s Algorithm consistently achieved lower
move counts and faster speeds compared to other algorithms.
[5]

A notable gap is seen on hardware simplicity as these works
relied on intricate setups, requiring 4 or more motors and
multiple webcams leading to increased cost of
implementation. Similarly, previous researches lean on
conventional cube detection methods without integrating
advanced computer vision. Additionally, interactive Graphical
User Interface (GUI) where users can interact with the cube
and visualize the steps for reaching the solution seems to be
absent among them.

3. System Design and Methodology

System Block Diagram The system design for solving the
Rubik’s Cube is outlined in the Figure 1, which encapsulates
the process flows. When the launch camera button is
activated in the GUI, the camera captures the cube’s
scrambled state. This image data is then fed into the YOLO
algorithm, which detects individual cubelets and classifies
them. These classifications are converted into a string format
representative of the cube’s state, which is the input for
Kociemba’s Algorithm. The algorithm processes this data to
generate a sequence of fewest face rotations that will lead to a
solved cube. This sequence serves a dual purpose: it will map
to movements of the mechanical system and updates the
virtual cube displayed in the GUI. The scrambles made to
virtual cube can also be mapped to the physical cube using
Kociemba’s algorithm. Communication between the software
and the mechanical components is facilitated through
Arduino, which has UART serial interface. This orchestrated
interaction between the software and hardware components
ensures the cube transitions from a scrambled to a solved
state or a desired state.

Mechanical Design We constructed a cube cover from wood,
with dimensions of ∼120x41.2x10 mm, which locks the top
two layers of the cube, allowing only the bottom layer to rotate.
This cover is connected to a stepper motor shaft and
supported by a stand, allowing it to move as needed to either
lock the layers or allow full cube rotation. The cube holder
holds the Rubik’s Cube firmly to prevent any unintentional
movement while its inner edges acts as a pivot for the flipping.
The holder has an inner square dimension of 60mm and an
outer dimension of 70mm, and it’s positioned on Styrofoam
base tilted at ∼10° for gravity-aided flipping of cube. Lastly,
the flipper arm, crafted from wood and measuring
∼100x30x10 mm, is vital for reorienting the cube. These
carefully crafted components, collaborates in solving the
Rubik’s Cube. We have also designed 3D printable parts for
these three main parts taking our actual parts as reference as
shown in Figure 2. The 3D model in Figure 3 is a reference for
actual design which will aid future recreations.

Circuit Design The circuit design in Figure 4 illustrates an
Arduino UNO connected to three A4988 stepper motor driver
modules to control three stepper motors. The Arduino,

Figure 1: System Block Diagram

powered by a +5V supply, interfaces with each A4988 module
through directional (DIR) and step (STEP) pins to control
motor direction and step sequences, respectively. Additionally,
micro-stepping resolution is set via MS1, MS2, MS3 pins. Both
the +5V and ground (GND) lines from the Arduino connect to
the VDD and ground pins on the A4988 modules to power the
logic circuitry. Each A4988 receives a +12V supply to power the
stepper motors and has its ground connected to a common
ground. Outputs from the drivers (2B, 2A, 1A, 1B) connect to
the respective stepper motor coils, initiating controlled
movements of the Flipper, Cover, and Cube Holder motors as
per the signals from the Arduino.

Cube Solving Algorithm To facilitate the solving of a Rubik’s
cube, Kociemba’s algorithm is utilized, implemented in
Python. The algorithm is initialized with a maximum depth (d)
of 24 moves, which is the maximum steps to solution for the
given implementation. This initialization ensures that the
algorithm searches for a solution within this optimal move
count as shown by the following pseudocode. [6]

151



Mechanical Automation with Vision: A Design for Rubik’s Cube Solver

Figure 2: 3D Parts

Figure 3: Reference 3D Model of System

Figure 4: Circuit Diagram

Kociemba’s Algorithm: Pseudocode

Require: Max depth d, Bound b, Current cube state s
1 : d ← 0
2 : b ←∞
3 : while d < b do
4 : for s ∈ Sd , r (ps) = e do
5 : if d +d2(ps) < b then
6 : Solve phase 2; report new better solution
7 : b = d +d2(ps)
8 : end if
9 : end for
10 : d ← d +1

Sd = set of all states at depth d
ps = current state of cube
r(ps) = function to determine whether state ps should be
excluded from further exploration or not
d2(ps) = function that estimates distance from state ps to
solved state

Cube State Detection We selected a YOLOv8 model which
was trained on COCO dataset. In the final training phase, we
fine-tuned the model by adjusting specific hyperparameters,

including setting epochs to 70, learning rate to 0.000909,
image size to 1120, utilizing the yolov8n.pt model with an
AdamW optimizer and a momentum of 0.9. A custom YOLO
cube detection model has been developed, which integrates
with OpenCV for real-time image processing. When fed an
image, the model swiftly identifies cubes and cubelets,
predicting their class and bounding box. These predictions are
then used to derive the cube’s state string for each face. Upon
processing all six faces, the individual face state strings are
combined to form the complete cube state string, illustrated
in Figure 5, which is handed over to Kociemba’s algorithm to
generate the solution string.

GUI The GUI software was designed in Unity which includes
a UI to interact with the cube and choose the solving process.
Users can toggle the ’Display’ option to show or hide the
solution panel. The solution panel shows the moves generated
by the algorithm and the total moves. The total moves
comprises of the user’s attempted moves to solve the cube and
the algorithm generated moves following the user’s attempt. A
right hand clockwise face rotation is represented by capital
letter of the face name while an apostrophe denotes
counter-clockwise rotation. The number 2 after the letter
represents two rotations in the same direction. For example,

152



Proceedings of 15th IOE Graduate Conference

Figure 5: Detection and Solution of a Sample Cube

in Figure 8, LUD’ represents the user moves i.e. 90° clockwise
rotation of left and upper face followed by 90° anticlockwise
rotation of down face and D2R’F is the algorithm generated
moves which is elaborated in the panel. The ‘Launch Camera
Auto’ button automatically captures and displays the state of
cube using a webcam. A ‘Solve Virtual’ button applies
Kociemba’s algorithm to a virtual cube, which users can
scramble using their mouse or keyboard. The ‘Launch Camera
Manual’ button also captures the cube’s state, but requires the
user confirmation for each face. The ‘Solve Real’ button
extends the functionality of Kociemba’s algorithm to both the
virtual and the real cube based on the captured state. There
are also ‘Scramble Virtual’ and ‘Scramble Real’ buttons for
randomizing the state of the virtual and/or real cubes,
respectively. Lastly, a ‘Step Mode’ allows users to step through
the solving process with arrow keys, giving them control over
the pace of solving.

3.1 Dataset Preparation

Dataset Collection and Augmentation The dataset for
training the cube detection algorithm was meticulously
compiled by capturing images of cubes through a laptop

Figure 6: Sample Dataset Images

webcam and Samsung A52 & Poco X5 phone as seen on
Figure 6. A total of 350 unique images were obtained during
this manual collection process. Python script was employed to
systematically capture images from the webcam and
appropriately name them. Additionally, for images captured
with the phone, ffmpeg program was employed to compress
the larger-sized images.

To enhance the diversity of the dataset, augmentation
techniques were applied to the collected images and a Python
script was utilized to alter brightness, saturation, exposure,
and contrast, (altering α and β values and HSV values of
image) resulting in ∼900 total images that enrich the dataset.

Image Annotation and Organization For effective training
of the cube detection algorithm, images were annotated to
label the distinct objects within them. Seven distinct classes
were defined (cube and six colors). The annotation process
was carried out using the open-source annotation tool, CVAT.

To train the model, the dataset was split into training and
validation sets in an 80:20 ratio. Approximately 700 images
were allocated for training, while 200 images were reserved
for validation. The histogram in Figure 7 shows the instances
of different classes for training dataset.

Figure 7: Bar diagram of Training Set

153



Mechanical Automation with Vision: A Design for Rubik’s Cube Solver

Figure 8: Graphical User Interface

4. Results and Discussion

4.1 Detection Model

The results associated with detection model training include
loss metrics, evaluation metrics and confusion matrix. From
Table 1, a rapid and steep decline in losses from epoch 1 to
epoch 30 can be seen, then the rate decreases and starts to
saturate. This shows that the model was trained effectively and
it’s learning to predict bounding boxes and its corresponding
classes accurately.

Table 1: YOLOv8 Loss Metrics

Epoch TBL TCL VBL VCL
1 0.95719 2.9183 0.88011 3.0461
5 0.79959 0.89576 0.83025 0.82605

10 0.72736 0.6779 0.75193 0.61718
15 0.64833 0.56015 0.66463 0.49791
20 0.60223 0.48648 0.65736 0.4541
25 0.56207 0.42682 0.56694 0.39193
30 0.52661 0.40773 0.55289 0.36016
35 0.48895 0.37072 0.53207 0.34346
40 0.4668 0.3382 0.51037 0.33165
45 0.4425 0.31981 0.49005 0.3139
50 0.42816 0.30919 0.46641 0.2888
55 0.39984 0.28916 0.46243 0.28574
60 0.39997 0.28485 0.44754 0.2776
65 0.34868 0.24467 0.43081 0.27128
70 0.32772 0.23121 0.42051 0.2611

(T/V)BL = (Train/Validation) Box Loss
(T/V)CL = (Train/Validation) Class Loss

Table 2 shows that Precision, Recall, and mAP50 metrics
improve rapidly over the first few epochs, indicating initial
learning progress. After around the 10th epoch, all metrics
saturate, suggesting that the model has mostly converged and
the model is able to perform accurately and consistently.

Table 2: YOLOv8 Performance Evaluation Metrics

Epoch Precision Recall mAP50
1 0.17353 0.6606 0.29833
5 0.8963 0.93123 0.94455

10 0.9182 0.96391 0.96295
15 0.94434 0.96763 0.97933
20 0.97034 0.98027 0.98385
25 0.97118 0.9751 0.98898
30 0.97767 0.97192 0.98921
35 0.97076 0.98069 0.99022
40 0.97619 0.97561 0.98936
45 0.97298 0.98215 0.98773
50 0.98063 0.98694 0.99049
55 0.98438 0.97878 0.98984
60 0.98259 0.97835 0.99119
65 0.98213 0.9842 0.98954
70 0.98443 0.98419 0.99047

Figure 9 shows that the classification model performs well,
with high accuracy for most classes as tested with validation
dataset of ∼200 images. Some confusion exists between "Red"
and "Orange" due to their color similarity. Lighting condition
also affects the detection of cube, with drastic conditions
rendering detection impossible.

154



Proceedings of 15th IOE Graduate Conference

Figure 9: Confusion Matrix

4.2 Mechanical System and Live Detection

The resulting solver is shown in Figure 10 which shows the
overall system integration between mechanical system,
camera, Arduino and computer. A working demo for the
system is available at: https://youtu.be/rlcDXjqy2Vs

Figure 10: Rubik’s Cube Solver

The time taken for execution of each move by the mechanical
system was set fixed to balance the consistency and speed
which is shown in Table 3.

Table 3: Time to Complete Individual Moves

Name of the Move Time (ms)
Flipping 2731
Rotating whole cube 90 degrees 1074
Rotating bottom layer 90 degrees clockwise
direction

2028

Rotating bottom layer 90 degrees
anticlockwise direction

2582

Rotating bottom layer 180 degrees (s) 3319

The system’s performance was evaluated through 1000
solution moves, each ranging from 18 to 24 face rotations in

length. Then the mechanical moves for realizing the solutions
were generated through a combination of moves mentioned
in Table 3 and the average time taken to execute these moves
was 128366.108ms(∼2.2 minutes). Table 4 presents some of
the sample data taken from the total of 1000.

Table 4: Time to Execute Solution Moves

Face Rotation Solution Moves Time (ms)
R’ B U2 B D L F2 R’ B’ D’ U’ U’ F’ F U L’ D2
F2 B2 R B U L2

140967

U B’ D F U2 R B’ L’ F2 R2 D’ D2 B2 B2 F2 L
D2 L’ F2 L’ L U2

132163

L2 R’ L D’ F2 D2 F F’ U2 R’ U D2 D’ U R2 D
D2 L’ F F D’ B

134797

U F2 L’ D2 D2 R2 B L’ R’ D D2 B’ D D R’ U2
F’ R2 B’ B2

115738

L2 L2 B D2 U R B2 D R U U’ D’ D2 R F2 L’ B’
R’ B’ U2 U2 L2 L2

131460

Live Detection In Figure 11, the YOLO object detection
program shows the detected objects alongside their
confidence scores. In the top-left corner, the program shows
the face string of the latest captured cube face, while the right
side presents a list of faces already captured.

4.3 Calibration of Mechanical System

The functionality of our cube-solving model depends on its
initial starting state. Utilizing stepper motors which are an
open-loop system, the model’s angles of rotation remain fixed
once set, regardless of subsequent states. Improper starting
position will cause cube to fall off the holder. The calibration
procedures ensure the accurate and consistent operation of
our cube-solving model.

To calibrate the cover, initially it is positioned parallel to the
motor, establishing our baseline. From this baseline point, the
cover undergoes required rotation to its starting point.

For calibrating the cube holder markings has been made on the
styrofoam base which serves as a guideline. Initially, the cube
holder is aligned with the markings, establishing our baseline
position then the cube holder undergoes required rotation to
its starting point.

5. Conclusion

This study introduces a vision-aided autonomous Rubik’s
Cube solver designed with a minimalist hardware
configuration and user-friendly graphical interface (GUI). The
research presents an integration of three disciplines; machine
learning, software development, and hardware
implementation, contributing the advancement of robotics
and machine learning by providing insights into hardware
optimization, software development and 3D design.
Additionally, the system’s efficiency could be enhanced
through the implementation of a closed-loop feedback
mechanism, leveraging magnetic auto-encoder technology.

155

https://youtu.be/rlcDXjqy2Vs


Mechanical Automation with Vision: A Design for Rubik’s Cube Solver

Figure 11: Live Cube Detection

Acknowledgments

The authors extend their gratitude to the Department of
Electronics and Computer Engineering, Thapathali Campus,
and the Robotics and Automation Center, Thapathali for their
invaluable support and resources, which were instrumental in
the completion of this research.

References

[1] Tomas Rokicki, Herbert Kociemba, Morley Davidson, and
John Dethridge. God’s number is 20, Jul 2010.

[2] Si Lu, Ming Huang, and Fan Kong. The design of a rubik’s
cube robot. Advanced Materials Research, 709:432–435, 06
2013.

[3] Vasile Dan, Gabriel Harja, and Ioan Nascu. Advanced
rubik’s cube algorithmic solver. pages 90–94, 02 2021.

[4] Forest Agostinelli, Stephen McAleer, Alexander Shmakov,
and Pierre Baldi. Solving the rubik’s cube with deep
reinforcement learning and search. Nature Machine
Intelligence, 1, 08 2019.

[5] Ekta Toshniwal and Yogesh Golhar. Rubik’s cube solver: A
review. pages 1–5, 11 2019.

[6] Tomas Rokicki. Twenty-five moves suffice for rubik’s cube,
2008.

156


	Introduction
	Related Works
	System Design and Methodology
	Dataset Preparation

	Results and Discussion
	Detection Model
	Mechanical System and Live Detection
	Calibration of Mechanical System

	Conclusion
	Acknowledgments
	References

