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Abstract
This paper investigates the climate change influence on landslide susceptibility mapping (LSM) in Nuwakot district, under the
future climate change scenarios. The study employs 11 factors as a landslide contributing factor, such as terrain slope, aspect,
curvature, elevation, geology, TWI, SPI, distance to stream, distance to road, land use/ land cover, and rainfall. Among them,
rainfall is considered a dynamic climate factor. In this study, the machine learning algorithm called XGBoost was selected in order
to map landslide susceptibility within the context of baseline (1995-2019) and for the future: near future (2021-2045), mid future
(2046-2070) and far future (2071-2095) under SSP245 and SSP585 scenarios, which are based on the three Coupled Model
Inter-comparison Project Phase 6 (CMIP6) global climate model ensembles. Data preparation and normalization are performed
using QGIS. Based on the results, future annual rainfall is expected to rise under both scenarios, with SSP585 exhibiting more
significant climatic changes. The AUC value of 97.25% indicates that XGBoost is an effective classifier for LSM in the study area,
and evaluation metrics such as accuracy, recall, precision, Mathew’s correlation coefficient, and Kappa Coefficient are used to
measure the quality of the model. Altogether, seven LSMs were generated, including baseline and future scenarios, in which future
scenarios have an increase in high and very high-class values compared to baseline susceptibility map. Thus, the result indicates
that the far future LSM under the SSP585 zonation is impacted more significantly due to the effect of climate change.
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1. Introduction

Climate change and global warming seem to be the most
critical environmental challenges of the 21st century[1].
Climate change, which is predicted to impact the frequency
and severity of rainfall events, creates the conditions for more
landslides in many areas worldwide[2][3][4]. Based on the
Global Climate Risk Index, Nepal is placed fourth among the
countries facing climate risks[5]. The aberrant temperatures
and rainfall drainage occurring due to climate change can
intensify the probability of landslide rates[6].

Landslides refer to natural processes that cause earth
materials to move down-slope at varying speeds. Nepal
Disaster Risk Reduction Portal reported that from 2010 to
2020, Nepal experienced 2386 landslide incidents, making it
the third most prevalent type of natural disaster in the
country[7]. Annually, the mountainous regions of Nepal face
significant challenges due to their rugged terrain, steep slopes,
unpredictable geological formations, and the presence of
fragile rock formations. These factors, coupled with intense
and prolonged rainfall during the monsoon season,
contribute to the occurrence of severe landslides and
associated phenomena[8].

Landslide susceptibility is the degree to which landslides are
likely to be triggered by a localized slope[9]. Consequently, the
production of susceptibility maps would play a great part in
delineating areas susceptible to future landslide eventualities.
Extensive research has been carried out on susceptibility
mapping using a range of tools[10], including direct

mapping[11], heuristic techniques[12], deterministic
models[13], probabilistic methods[14], and machine learning
models[15]. Among these methods is the application of
machine learning algorithms, which have gained popularity in
recent years because of advancements in the field of
algorithms and remote sensing data and survey sources. In
this research, the XGBoost algorithm is used for landslide
susceptibility mapping. Pyakurel et al. assessed machine
learning algorithms for predicting landslide susceptibility
caused by earthquakes, and they reported that XGBoost
proved to have the best performance in terms of achieving
high accuracy.

The Shared Socioeconomic Pathways (SSPs), which comprise
the SSP245 and SSP585 scenarios, were designed to examine
the implications of different levels of global warming and
socioeconomic situations on future climatic scenarios. The
SSP245 scenario assumes modest socioeconomic growth and
provides a radiative forcing of 4.5 W/m2 at the end of the
century. This is consistent with major, but not excessive,
mitigation actions [16]. SSP585, with a radiative forcing of 8.5
W/m2, is considered a high-end route due to its high
greenhouse gas emissions and inadequate mitigation efforts
[17]. These scenarios are critical for climate modeling.

The aim of this study is to use CMIP6 global climate model
data combined with the landslide susceptibility models in
order to explore the near future (2021-2045), mid future
(2046-2070), and far future (2071-2095) landslide conditions in
the Nuwakot District—specifically in respect of the change in
extreme rainfall under SSP245 and SSP585 scenarios.
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2. Study Area

Nuwakot district is located in the Bagmati province of Nepal
as shown in figure 1. It covers an area of 1,121 km2 within
latitudes 27°48’ N to 28°06’ N and longitudes 84°58’E to
85°30”E. Its altitude ranges from 518m to 4876 m above sea
level[18]. Sindhupalchowk and Kathmandu districts are to the
east; Dhading to the west; Rasuwa to the north; and Dhading
and Kathmandu to the south. Geologically, the area lies in the
Lesser Himalayan and Higher Himalayan Zones of central
Nepal. The area has a very distinct geological feature. The
study area constitutes hilly terrain exhibiting rugged
topography with a diversity of land forms, which is
characterized by the elevated mountains and the deep river
valleys.

Figure 1: Location of study area

3. Materials and Methodology

3.1 Landslide Inventory

A landslide inventory map provides crucial data for assessing
landslide hazards or risks on a regional level for probabilistic

Figure 2: Landslide Inventory Map

analysis of landslide susceptibility [19]. Satellite images were
integrated to prepare landslide inventory. Polygons were
constructed in Google Earth to map previous landslides and
then processed in a QGIS. Figure 2 illustrates that in the study
area, 491 landslides were mapped which covers 2.84 km2 area.

3.2 Data Collection and preparation of Landslide
causative factors (LCFs)

Data collection for this study was accomplished through the
use of satellite imagery, aerial photography, scholarly articles,
official government documents, and online resources.
Choosing and preparing the LCFs database is essential for
attaining

precise accuracy in the landslide susceptibility model for
predicting areas at risk of landslides. In this work, 11 different
landslide conditioning factors are used and these factors are
process through using QGIS as shown in figure 3. Table 1
illustrates the different landslide causative factors taken, their
resolutions and their sources.

Table 1: Landslide causative factors and data source

S.N. Landslide causative factors Source
1 Slope DEM
2 Aspect DEM
3 Elevation DEM (USGS)
4 Curvature USGS (DEM)
5 Geology DMG
6 Distance to Stream DEM
7 Stream Power Index USGS (DEM)
8 Topographic Wetness Index USGS (DEM)
9 Distance to Road DOR

10 LULC ICIMOD
11 Rainfall DHM

3.3 Methodology

Landslide conditioning factors (LCFs) were created on the
basis of various data sources. Landslide and non-landslide
dataset were produced from the landslide inventory map
which gathers data of the affected areas using historical data,
field surveys and remote sensing. The projections for future
precipitation were formed from three GCM such as EC-
Earth3, MPI- ESM1- 2HR and NorESM2- MM and under
SSP245 and SSP585 for different period NF (2021-2045), MF
(2046-2070) and FF (2071-2095). All these data for different
period are assembled using QGIS. From which landslide
points and non- landslide points dataset are extracted in the
form of Excel file then processed in python. These points are
divided into training (70%) and testing (30%) data sets.
Machine learning algorithms called Extremely Gradient
Boosting (XGBoost) is used for landslide susceptibility
prediction and mapping process. The performance of the
model was assessed utilizing metrics such as Accuracy,
Precision, Recall, Matthew’s Correlation Coefficient (MCC),
Kappa Coefficient, and Area under the ROC curve. Then
model resulted the Landslide Susceptibility Mapped for
Baseline, Near Future (NF), Mid Future (FF) and Far Future
(FF). Figure 4 summarized the methodology of this study.
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(a) Slope (b) Aspect (c) Curvature (d) Elevation

(e) Geology (f) Distance to Stream (g) SPI (h) TWI

(i) LULC (j) Distance to Road (k) Rainfall

Figure 3: Map of Landslide Causative Factor
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Figure 4: Methodological Framework

3.3.1 Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) is a machine learning
algorithm that belongs to the class of ensemble learning
methods, where multiple models are combined to improve
predictive performance. It builds a strong predictive model by
sequentially adding weak learners, typically decision trees,
and optimizing a predefined objective function. It used
effectively gradient tree boosting with minimizing following
objective

Γ(ϕ) =∑
i
ℓ(ŷi , yi )+∑

k
Ω( fk ) (1)

Here, the difference between the forecast y^i and the target yi
is measured by the differentiable convex loss function ℓ. The
model’s complexity is penalized by the second term, Omega.
Traditional optimization techniques in the Euclidean space
cannot be used to improve the tree ensemble model in
Equation 1 since it has functions as parameters. The model is
instead trained in an additive way. Formally, if y^i (t) is the
prediction of the i th instance at the t th iteration, then fk must
be added to minimize the goal below[20].

Γ(ϕ) = n
∑

i
ℓ(ŷi , y i

t−1)+ ft (Xi )+Ω( ft ) (2)

4. Result

4.1 Performance Measurement of Model

The calculated performance measuring parameter as
accuracy, precision, recall, MCC, Kappa and AUC of the
XGBoost model is summarized in Table 2. By using XGBoost
Model, accuracy, precision and recall values were found to be
93.2%, 84% and 88.19% respectively. Kappa Coefficient is used

to find the strength of agreement of classification which found
81.55% coefficient value. The AUC value of 97.25% indicates
that XGB is an effective classifier for landslide susceptibility
mapping in the study area as shown in Figure 5.

Table 2: Model Performance Parameter

S.N. Performance Parameter Value
1 Accuracy 93.2%
2 Precision 84%
3 Recall 88.19%
4 MCC 81.59%
5 Kappa Coefficient 81.55%
6 AUC 97.25%

Figure 5: Area under the ROC Curve

4.2 Landslide susceptibility map

A baseline susceptibility map for study area is created following
XGBoost model evaluation as shown in Figure 6. Likewise, the
proportion of area occupied by each susceptibility class across
the entire study area was determined. It was observed that
(34.63 km2) 2.94% of the total area falls within the categories of
very high and high susceptibility. The majority of the study area
is categorized as having very low susceptibility, encompassing
(1039.39 km2) 88.12% of the total area which is followed by low
and moderate classes, as illustrated in Table 3.

Table 3: susceptibility classes for Landslide affected area

S.N. Susceptibility Class Area(km2) Area(%)
1 Very Low 1039.39 88.12
2 Low 76.21 6.46
3 Moderate 29.26 2.48
4 High 19.25 1.63
5 Very High 15.38 1.30
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Figure 6: Baseline landslide Susceptibility Map

To determine which class ranges are more susceptible to
landslides, the baseline susceptibility map was compared to
thematic maps of the landslide conditioning factors.
According to the analysis, areas with slopes ranging from 32°
to 42° exhibit high susceptibility to landslides. South-facing
aspects are particularly prone to landslides based on slope
aspect, while concave areas are more susceptible in terms of
curvature. Also, TWI, SPI, Elevation, Distance to Road and
Distance to Stream susceptibility is notably high within the
class range of 0-6.51, 0 - 42,568.65, 1135 – 1465 meters, 0-50
meters and >350 meters, respectively. In geological terms, the
Ranimatta are the most susceptible. The majority of forest,
and barren land cover classes fall within highly susceptible
areas. For rainfall, susceptibility peaks within the ranges of
2,411.65 - 2,710.52mm.

4.3 Projected Future Climate for Precipitation

EC- Earth3, MPI- ESM1- 2HR and NorESM2- MM are the three
GCM selected for the future climate projection for
precipitation. From these GCM, values were projected and
ensembled into a single value for the selected meteorological
station and the annual average value was taken for near future
(NF), mid future (MF) and far future (FF). Under SSP245 and
SSP585 are the scenarios taken for each future period. The
average annual precipitation across the entire study area is
15.80%, 17.84%, and 16.31% for NF, MF, and FF, respectively,
under SSP245, with values increasing order. And, the seasonal
(monsoon) precipitation for NF, MF, and FF is 13.01%, 16.10%,
and 14.28%, respectively, is in increasing order. Similarly,
seasonal changes under SSP245 values for winter,
pre-monsoon and post-monsoon seasonal shown in Figure 7.

Figure 7: Projection of Seasonal Precipitation under SSP245

Likewise, Under SSP585, the average annual precipitation for
the whole study area is 14.24%, 27.51%, and 44.70% for NF,
MF, and FF, respectively, with values increasing order. Figure
8 illustrates the seasonal change under SSP585 in which the
seasonal (monsoon) precipitation for NF, MF, and FF is 9.71%,
25.85%, and 44.69%, respectively, showing a raising trend. Pre-
monsoon changes are projected to be 31.40%, 32.89%, and
34.03%, while winter precipitation changes are projected to be
48.33%, 41.45%, and 37.99% for NF, MF, and FF, respectively.
Post-monsoon changes are similarly projected to be 55.45%,
44.51%, and 87.34%.

Figure 8: Projection of Seasonal Precipitation under SSP585

4.4 Landslide Susceptibility Maps Under Future
Climate Scenarios

The landslide susceptibility maps for all future climate
scenarios (NF, MF, and FF) generated from SSP245 and SSP585
were classified into five susceptibility classes: very low, low,
moderate, high, and very high, as illustrated in Figure 9.

Table 4 presented the proportion of area occupied by each
susceptibility class across the entire study area under SSP245
for NF (2021-2045), MF (2046-2070) and FF (2071-2095). The
zones classified as high and very susceptible, comprising
approximately 2.96%, 2.92%, and 3.11% of the study area,
respectively, exhibited an increasing trend under the SSP245
scenario for NF, MF, and FF, in comparison to the baseline
period (1995-2019).
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(a) Near Future (b) Mid Future (c) Far Future

(d) Near Future (e) Mid Future (f) Far Future

Figure 9: Landslide susceptibility map: (a), (b), (c) under SSP 245 scenario; (d),(e),(f) under SSP 585 scenario

Table 4: Landslide susceptible area under SSP245

Susceptible Area
SSP 245 (km2)
NF MF FF

Very Low 1035.50 1047.16 1041.92
Low 77.75 69.85 71.44

Moderate 30.83 27.47 28.89
High 20.00 19.29 21.23

Very High 15.42 15.72 16.01

Table 5 shown the proportion of area occupied by each
susceptibility class in the whole study area under SSP585 for
NF (2021-2045), MF (2046-2070) and FF (2071-2095). The high
and very susceptibility level zones, which represented around
2.91%, 3.1%, and 3.33% of the study region, respectively,
showed a rising trend based on the SSP585 scenario for NF, MF,
and FF compared with baseline (1995-2019).

Table 5: Landslide susceptible area under SSP585

Susceptible Area
SSP 585 (km2)
NF MF FF

Very Low 1037.67 1034.03 1028.31
Low 76.94 77.33 80.09

Moderate 30.07 31.00 31.28
High 19.31 21.26 22.76

Very High 15.51 15.87 17.05

The very high landslide susceptibility area under SSP585 for
Near future, Mid Future and Far future is 15.51 km2, 15.87 km2

and 17.05 km2 respectively, which is increasing trend. Also,
high and moderate susceptible area for Near Future, Mid
Future and Far future area in increasing order. It is observed
that within susceptibility maps for all scenarios, the
susceptibility map for the scenarios SSP585 FF demonstrates
the highest susceptibility. This data shows that there can be a

140



Proceedings of 15th IOE Graduate Conference

rise in vulnerability to landslides location if there will be
climate change. Based on another study[21] conducted across
the Nepalese valley regions of Bagmati and Madhesh, for
future RCP4.5 and RCP8.5 climatic change scenarios, there
would be more counties and areas with very high vulnerability
than the baseline period.

5. Conclusion

In this study, landslide susceptibility modeling and mapping
were conducted using the machine learning algorithm called
XGBoost to identify areas prone to landslides under both
present and projected future conditions. The AUC value
derived from the testing dataset is calculated as 0.9725,
indicating the XGBoost model’s exceptional performance as a
classifier for climatic-induced landslide classification.
Additionally, the Kappa coefficient of 0.8155 suggests a
substantial agreement between the model’s classifications and
its output. The result indicates a rise in the extent of high and
very high landslide susceptible areas under both SSP
scenarios compared to the baseline period, with the SSP585
far-future scenario exhibiting the most substantial increase in
susceptibility area. As increasing trend rainfall is only a
dynamic factor used in this study area, result increasing in
landslide susceptibility map indicates an effect of climate
change on landslide.

In the future, prediction accuracy will be influenced by
various factors, including data quality such as the reliability of
landslide inventory maps and the inclusion of dynamic factors
like land use and land cover (LULC). Additionally, the choice
of machine learning algorithm plays a crucial role. To address
these limitations and improve predictions, future research
efforts should focus on enhancing data quality, exploring
alternative algorithms, and considering dynamic factors like
LULC. Furthermore, expanding the regional and temporal
focus of studies will be essential for a more comprehensive
understanding of landslide dynamics. By broadening the
scope to include diverse environmental factors and
geographical contexts, future research can refine risk
mitigation strategies and contribute to more effective land use
planning, infrastructure initiatives, and emergency
preparedness. This approach will enhance community
resilience to the evolving impacts of climate change.
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