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Abstract
Rainfall can be considered an important landslide-triggering factor in Nepal as most landslides occur during the monsoon season.
Climate change is projected to amplify the frequency and intensity of precipitation events. Extreme hydro-meteorological conditions
induced by climate change can increase the occurrence of landslides in geologically fragile regions like Nepal. We investigated the
susceptibility of landslide events under different future Shared Socio-economic Pathways (SSPs) scenarios in Lamjung district.
Landslide susceptibility maps were developed for the baseline period (1995-2020), and future climate scenarios were prepared with
a set of three Coupled Model Inter-comparison Project (CMIP6) models under SSP245 and SSP585 for the near future (2021-2045),
mid-future (2046-2070) and far future (2071- 2095). A machine learning algorithm XGBoost was utilized to generate landslide
susceptibility maps. Twelve multivariate factors contributing to landslides were considered including terrain slope, aspect, elevation,
curvature, TWI, SPI, geology, soil, distance from the stream, distance from the road, land use/ land cover, and mean annual rainfall,
with rainfall selected as a dynamic factor. Further, metrics like Accuracy, Recall, Precision, F1-Score, and Area under the Curve
(AUC) were used to assess the model quality. Seven landslide susceptibility maps were developed, classified into five susceptible
classes, and compared. The baseline susceptibility maps show that 2.88% and 3.29% of the study area lie in high and very high
susceptibility classes. Among the eight municipalities within the study region, Dordi and Marsyangdi rural municipalities exhibit
the highest susceptibility to landslides in the baseline period. However, in future landslide susceptibility scenarios, Dudhpokhari,
Kwaholasothar, Madhyanepal, and Sundarbazar municipalities are projected to experience a significant increase in landslide areas.
The future landslide susceptibility results show an increase in the high and very high susceptibility classes for both SSP245 and
SSP585 scenarios compared to the baseline landslide susceptibility map.
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1. Introduction

Landslides are geological events defined as the gravitational
movement of earth elements, such as rock, debris, and soil,
downslope. Its inherently weak geology, intense and improper
land use practices, and seasonal monsoon rains, combined
with the tectonically active nature of the Himalayan mountain
chain make Nepal susceptible to natural hazards like
landslides, debris flows, and soil erosion [1].

The likelihood of landslides occurring in a given location is
known as landslide susceptibility and is determined by several
conditioning factors that contribute to slope failure [2].
Landslide Susceptibility Mapping (LSM) is a process that
involves evaluating an area’s susceptibility to landslides by
examining and analyzing the elements that contribute to the
slope instability. This mapping technique integrates diverse
data sources like topography, geology, soil properties, land
cover, rainfall patterns, and historical landslide occurrences
into a Geographic Information System (GIS) framework to
spatially analyze factors, generating susceptibility maps that
depict varying levels of landslide vulnerability across different
areas.

There are several approaches for developing landslide
susceptibility like direct mapping [3], deterministic approach
[4], heuristic model [5], probabilistic model [6], and machine

learning models [7, 8]. Production of susceptibility maps has
become less challenging with advances in processing power,
geographic techniques, and machine learning (ML)
algorithms.

With the advancement in machine learning, various
algorithms have been utilized for landslide susceptibility
mapping such as Logistic Regression (LR), Random Forest
(RF), Support Vector Machine (SVM) et cetera. In this study,
we use the XGBoost algorithm for the landslide susceptibility
mapping. In comparison to other machine learning
algorithms, Merghadi et al. [9] found that tree-based
ensemble algorithms outperformed other machine learning
approaches in terms of performance and suitability. Similarly,
Pyakurel et al. [8] evaluated LR, RF, SVM, XGBoost, and
Extremely Randomized Trees Classifier (ET) algorithms for
predicting earthquake-induced landslide susceptibility, noting
that XGBoost performed better than LR, RF, and SVM
algorithms, with slightly lower performance compared to ET.

1.1 Effect of Climate Change on Landslides

Global climate change is one of the biggest problems facing
the modern world. The Earth system and societies are already
facing challenges due to threats associated with climate
change. Nepal is currently grappling with the consequences of
climate change, which include rising temperatures, shifts in
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precipitation patterns, and the gradual disappearance of
glaciers. A study of the monsoon rainfall period from 1971 to
2005 shows that there is a linear increasing trend of about 2.08
mm/year with large inter-annual variation [10]. The IPCC
special report has expressed high confidence in the notion
that the escalating alteration in heavy precipitation will
influence the occurrence of landslides in certain global
regions [11].

Research undertaken in Taiwan [12], China [13], Greece [14],
and Italy [15] have shown that climate change will result in an
increase in the frequency of shallow, rapid landslides as well as
an expansion to their extent. Studies conducted by Wijaya et
al. [16], and Nefros et al. [14] have shown that climate change
affects slope stability. The results showed that the area of high
and very high susceptibility zones will increase in the future,
in line with the climate change effect where rainfall and
temperature are projected to increase. Research conducted in
Nepal over the past few decades has shown rising trends in
landslides [17] and extreme precipitation [18]. A study by K.C.
et al. [19] on the spatial and temporal analysis of landslides
shows a significant correlation between landslides with
monthly rainfall, with an intensive cluster of 93.26 % of total
landslides during the rainy season.

This study aims to map landslide susceptibility in Lamjung
district using the XGBoost algorithm for a baseline (1995-2020)
scenario and three future time horizons: near future
(2021-2045), mid-future (2046-2070), and far future
(2071-2095) under SSP245 and SSP585 climate scenario.

2. Materials and Methodology

2.1 Study Area

Lamjung district is situated in the mid-hill regions of Nepal,
with its geography extending to the foothills of the Himalayas.
It is located in between latitudes of 28°03’10”and 28°30’36"
N, and longitudes of 84°11’22”- 84°41’51” E, with elevation
ranging from 373 m to 7870 m.

Figure 1: Location of study area

It shares its eastern and western borders with Gorkha and Kaski
while it is bordered by Manang and Tanahun districts in the
north and the south respectively. Lamjung district covers an

area of 1692 km2. On average, the annual temperature ranges
from a minimum of 14.1°C to a maximum of 26.7°C, while the
annual precipitation is recorded as 2944.23mm.

2.2 Landslide Triggering Maps

In landslide susceptibility mapping, landslide triggering factor
maps play a critical role in assessing and understanding the
factors that contribute to landslide occurrence. These maps
depict various geological, geo-morphological, climatic, and
anthropogenic factors that can trigger landslides. The factors
considered in this study are presented in Table 1 along with
their sources.

Table 1: Landslide triggering factors and data source

S.N Factors Source
1. Slope Angle Derived from DEM
2. Slope Aspect Derived from DEM
3. Curvature Derived from DEM
4. Geology DMG
5. Soil SOTER
6. Distance to Stream Derived from DEM
7. Distance to Road OpenStreetMap
8. Elevation SRTM DEM (USGS)
9. Topographic Wetness

Index
Derived from DEM

10. Stream Power Index Derived from DEM
11. Rainfall DHM
12. Land use/ land cover ICIMOD

2.3 Landslide Inventory Map

Landslide inventory maps are essential components of
landslide susceptibility mapping providing valuable data on
the location, extent, and characteristics of past landslide
events within a particular area. These maps document the
occurrence of landslides over time and serve as foundational
datasets for assessing landslide susceptibility and risk.

Figure 2: Landslide inventory map
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For this research, the observations and digitization of
landslide areas were done through visual interpretations of
existing landslides on high-resolution satellite imagery, using
Google Earth images. Polygons were created to map past
landslides in Google Earth and processed in the GIS
environment. 345 landslides were mapped in the study area
covering an area of about 1.50 km2.

2.4 Methodology

The landslide-triggering factors were developed using ArcGIS.
Random points were created inside the landslide polygons to
extract attributes of the landslide points in every landslide
triggering factor. Similarly, the attributes of the non-landslide
points were also extracted for every factor. The extracted
attributes generated in the form of an Excel file were then
processed in Python. The landslide and non-landslide points
were divided into two datasets training (70%) and testing
(30%) data set. Extremely Gradient Boosting (XGBoost) was
used as the machine learning algorithm for mapping the
landslide susceptibility. The model was evaluated using
Accuracy, Precision, Recall, F1-Score, and Area under the ROC
curve.

Figure 3: Methodological framework for landslide
susceptibility prediction under future climate scenarios

For the future precipitation projection, the data from three
GCM (Access-CM2, EC-Earth3, MPI-ESM1-2HR) under CMIP6
were downloaded and processed in R Studio. The GCMs under
SSP245 and SSP585 were used to project future precipitation.
The GCM projections were bias-corrected with robust
empirical quantiles (RQUANT) method using the observed
data from the study area to fit the GCM’s coarser resolution.
The projected precipitation was used to generate the future
precipitation maps for three future time-frames: 2021-2045 for
the near future (NF), 2046-2070 for the mid-future (MF), and
2071-2095 for the far future (FF). The precipitation maps were

used as the dynamic factors to produce the future landslide
susceptibility maps.

2.4.1 Extreme Gradient Boosting

XGBoost is a tree-based machine learning algorithm rooted
in the gradient boosting principle that employs parallel tree
boosting, allowing it to sequentially learn from the errors of
previous trees. By employing gradient descent, it minimizes
the loss function and mitigates overfitting. Ultimately, the
predictions from all the trees are aggregated to generate the
final output [20]. XGBoost uses classification and regression
trees (CART) as a base learner as follows:

O =
n∑

i=0
L(yi , (ŷi ))+

K∑
k=0

R( fk )+C (1)

Where L(yi , ŷi ) is the loss function that measures the difference
between the actual value yi and predicted value ŷi . R( fk ) is a
regularization function to prevent over-fitting. K represents
the number of trees (weak learners) in the ensemble.

3. Results

3.1 Model Performance

The performance of the XGBoost classification algorithm is
presented in Table 2. The Accuracy and Precision values of the
XGBoost model are found to be 93.8%, and 95.4% respectively.
To identify the positive samples from the data, XGBoost also
has a good recall value of 92.6%. The 98.2% AUC value
indicates that for landslide susceptibility mapping, XGBoost is
a good classifier for the study area.

Table 2: Model performance per various measures

S.N Performance Metrics Value
1 Accuracy 93.8%
2 Precision 95.4%
3 Recall 92.6%
4 F1-Score 93.7%
5 AUC 98.1%

The area under the ROC curve (AUC) with actual label
prediction plotted in Figure 5 also indicates that XGBoost is a
good classifier for landslide susceptibility mapping for the
study area.

102



Proceedings of 15th IOE Graduate Conference

(a) Slope (b) Aspect (c) Curvature

(d) Geology (e) Soil (f) Distance to stream

(g) Distance to road (h) Elevation (i) TWI

(j) SPI (k) LULC (l) Rainfall

Figure 4: Landslide triggering factors
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Figure 5: Area under the ROC curve

3.2 Baseline Landslide Susceptibility Map

Figure 6: LSM under baseline condition

The baseline susceptibility map for the study area developed
using the XGBoost algorithm is shown in Figure 6. Each
susceptibility class area was calculated. Results show that
54.768 km2 (3.29%) of the total area lies in the very high
susceptibility class. Most of the study area lies within the very
low susceptibility class 82.45% followed by low, moderate, and
high classes with 7.08%, 3.84%, and 2.88% areas respectively
(Table 3).

3.3 Municipality-wise Susceptibility Analysis

While a significant portion of the study area is categorized as
having very low susceptibility, the municipality-level analysis
aims to identify areas falling within the high and very high

Table 3: Landslide affected area for different susceptibility
classes

S.N
Susceptibility

Class
Area

(km2)
Area
(%)

1 Very Low 1373.66 82.45
2 Low 118.02 7.08
3 Moderate 63.95 3.84
4 High 48.04 2.88
5 Very High 54.76 3.29

susceptibility categories. As observed in Figure 7, Dordi and
Marsyangdi rural municipalities exhibit the highest
susceptibility to landslides in terms of area coverage within
the high and very high susceptibility classes, followed by
Besishahar municipality and Kwhlosothar rural municipality,
and subsequently by Dudipokhari rural municipality and
Rainas municipality respectively. Conversely, Madhyanepal
and Sundarbazar municipality demonstrate the lowest
susceptibility to landslides respectively.

Figure 7: Area coverage percentage of high and very high
(H+VH) landslide susceptibility classes within municipality

3.4 Road Exposure Assessment

The length of the road section exposed to landslides is
determined by conducting spatial overlay analysis, where
existing road network data is overlaid with landslide
susceptibility maps within the GIS environment. The
assessment of the physical exposure of the road network
involves determining the ratio or proportion of road section
length that could potentially be affected by landslides to the
total length of the road [16]. As shown in Table 4, the majority
of the road in the study area falls in the very low, at 48.56%
susceptibility class, while 12.96% and 9.54% length of the road
falls in the low and medium susceptibility class, respectively.
Similarly, 9.99% length of the road falls in the high
susceptibility class whereas 18.95% falls in the very high
susceptibility class.

Table 4: Road exposure to landslide susceptibility

Landslide
Susceptibility

Road Exposure
Length (km)

Road Exposure
Length (%)

Very Low 940.21 48.56
Low 250.96 12.96

Medium 184.63 9.54
High 193.47 9.99

Very High 366.95 18.95
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3.5 Future Climate Projection

The three GCM (Access-CM2, EC-Earth3, MPI-ESM1-2HR)
values were projected, and the extracted value of the relevant
station was calculated. Three future time-frames were
considered: 2021-2045 for the near future (NF), 2046-2070 for
the mid-future (MF), and 2071-2095 for the far future (FF). The
projected future values of selected GCMs were ensembled into
a single value for the selected meteorological station and the
annual average value was taken for the corresponding futures.

3.5.1 Precipitation Projection under SSP245 Scenario

Figure 8: Seasonal precipitation projection under SSP245
scenario

Under SSP245, the average annual precipitation for the whole
study region is projected to increase by 18.24% in NF, 24.76%
in MF, and 22.54% in FF. On a seasonal scale, the precipitation
in monsoon is projected to increase by 15.80%, 21.98%, and
21.51% for NF, MF, and FF respectively. Similarly, change in
post-monsoon is projected to be 18.08%, 20.96%, and 28.54%,
change in pre-monsoon is projected to be 33.26%, 45.93%, and
33.86%, change in winter precipitation is projected to be 9.26%,
-4.67%, and -17.35% for NF, MF, and FF respectively.

3.5.2 Precipitation Projection under SSP585 Scenario

Figure 9: Seasonal precipitation projection under SSP585
scenario

Under SSP585, the average annual precipitation for the whole
study region is projected to increase by 13.78% in NF, 25.07%
in MF, and 51.85% in FF. On a seasonal scale, the precipitation
in monsoon is projected to increase by 11.07%, 21.76%, and
54.48% for NF, MF, and FF respectively. Similarly, change in
post-monsoon is projected to be 6.51%, 7.40%, and 54.20%,

change in pre-monsoon is projected to be 31.58%, 36.25%, and
50.22%, change in winter precipitation is projected to be 6.32%,
-8.77%, and -26.41% for NF, MF, and FF respectively.

3.6 Landslide Susceptibility Maps under Future
Climate Scenarios

Six landslide susceptibility maps were generated under SSP245
and SSP585 scenarios for the near future (2021-2045), mid-
future (2046-2075), and far future (2076-2095). The landslide
susceptibility maps were classified into five susceptible classes
in ArcGIS viz. very low, low, moderate, high, and very high
(Figure 12). Area geometry was calculated to quantify the total
area of landslide susceptibility.

3.6.1 Landslide Susceptibility under SSP245 Scenario

For the SSP245 scenario, in the near future, 3.56% and 2.91 %
of the study area lie in the high and very high susceptibility
respectively. For the mid-future, 3.26% and 3.52% of the study
area lie in the high and very high susceptibility class
respectively. Finally, for the far future, 3.23% and 3.40% of the
study area lies in the high and very high susceptibility classes,
respectively. Based on the SSP245 scenario for the near future,
mid-future, and far future, the high and very high
susceptibility level zones occupied approximately 6.47%,
6.78%, and 6.63% of the study area, respectively.

Table 5: Landslide susceptible area under SSP245

Susceptibility Class
SSP 245 Area(%)

NF MF FF
Very Low 81.92 80.02 80.65

Low 7.22 8.12 7.95
Moderate 3.94 4.59 4.32

High 2.91 3.26 3.23
Very High 3.56 3.52 3.40

Municipality-wise variation in the combined high and very
high susceptible area (Figure 10) shows an increase for all time
horizons in Besishahar, Dudhpokhari, and Madhyanepal when
compared to the baseline. In Besishahar and Madhyanepal, the
most significant increase in the susceptible area is observed in
the mid-future period. In Dudhpokhari, the highest increase
in susceptible areas occurs in the near future period.

Figure 10: Relative change in combined high and very high
(H+VH) susceptible area across municipalities under SSP245

In Marsyangdi and Rainas, susceptibility initially rises in the
near future period, followed by a subsequent decrease in the
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mid-future period, and then another increase in susceptibility
in the far future period. In Sundarbazar, the susceptible area is
shown to increase in the near future and mid-future periods,
then decrease in the far future period. For Dordi, the
susceptible area decreases in the near future period, then
increases in the subsequent mid-future and far future periods.
In Kwholasothar, susceptibility decreases in the near future
and far future periods and increases in the mid-future period
compared to the baseline.

3.6.2 Landslide Susceptibility under SSP585 Scenario

For the SSP585 scenario, in the near future, 2.92% and 3.39 %
of the study area lie in the high and very high susceptibility
respectively. For the mid-future, 3.47% and 3.41% of the study
area lie in the high and very high susceptibility classes
respectively. Finally, for the far future, 3.37% and 3.62% of the
study area lies in the high and very high susceptibility classes,
respectively. Based on the SSP585 scenario for near-future,
mid-future, and far future, the high and very high
susceptibility level zones, occupied approximately 6.31%,
6.88%, and 7.00% of the study area, respectively.

Municipality-wise variation in the combined high and very
high susceptible area (Figure 12) show an increase for all time
horizons in Besishahar, Dudhpokhari, Madhyanepal, Rainas,
and Sundarbazar when compared to the baseline. In
Besishahar and Sundarbazar, the most significant increase in
the susceptible area is observed in the far future period. While
in Dudhpokhari, Madhyanepal, and Rainas, the most
significant increase in the susceptible area is observed in the
mid-future period.

Table 6: Landslide susceptible area under SSP585

Susceptibility Class
SSP 585 Area(%)

NF MF FF
Very Low 82.17 79.86 79.98

Low 7.15 8.24 7.98
Moderate 3.92 4.57 4.58

High 2.92 3.47 3.37
Very High 3.39 3.41 3.62

Figure 12: Relative change in combined high and very high
(H+VH) susceptible area across municipalities under SSP585

In Kwholasothar and Marsyangdi, susceptibility initially
decreases in the near future period, followed by a subsequent
increase in the mid-future and far future period. In Dordi, the
susceptible area is shown to increase in the near future and far
future while decreasing in the mid-future period.

(a) Near Future (b) Mid-Future (c) Far Future

(d) Near Future (e) Mid-Future (f) Far Future

Figure 11: Landslide susceptibility map: (a),(b),(c) under SSP 245 scenario; (d),(e),(f) under SSP 585 scenario
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4. Discussion

The landslide-susceptible areas are projected to increase for
the future climate scenarios for both SSP245 and SSP585, in
comparison to the landslide-susceptible areas modeled for
the existing baseline climate conditions (1995–2020). SSP585
showed larger susceptible areas than SSP245 in all future
scenarios except for the near future scenario where it shows a
decrease in the susceptible areas. The susceptibility map for
the SSP585 far future scenario shows the highest susceptibility
compared to all other scenarios. Based on the results, it shows
that under climate change scenarios exposure to landslides
would increase for the study area. A similar study [16]
conducted in Bagmati and Madhesh province of Nepal also
found that there will be an increase in high and very high
susceptible areas compared to the baseline period under
future RCP4.5 and RCP8.5 climate scenarios. Landslide
susceptibility maps can help land use planners with better
decision-making.

In terms of area coverage within the high and very high
susceptibility classes, Dordi and Marsyangdi rural
municipalities show the highest susceptibility to landslides
among the eight municipalities. Future landslide
susceptibility scenarios show a significant increase in
susceptible areas in Dudhpokhari, Kwaholasothar,
Madhyanepal, and Sundarbazar. The feature importance
visualization (Figure 13) shows that distance from the road
and distance from the stream play a significant role in
landslide susceptibility, with the spatial distribution of
landslide susceptibility higher along Marsyangdi, Dordi, and
Chepe River. A study conducted by Pokhrel and Pathak [21] on
landslide susceptibility mapping in the southern part of the
Marsyangdi River also found that higher susceptibility classes
generally follow the river or road section. Assessment of road
exposure to landslide susceptibility shows that 560.13 km
(28.94%) of 1936.240 km road falls in the high and very high
susceptibility class.

Figure 13: Feature importance

Landslide susceptibility mapping is crucial in comprehending
and mitigating landslide risks in susceptible regions. They
enable the identification of landslide-prone areas,
empowering authorities and stakeholders to allocate
resources strategically and enact suitable measures to reduce
risks and enhance disaster preparedness. By integrating
climate projections into susceptibility mapping models,
researchers can assess how changing climatic conditions may
impact landslide susceptibility in different regions. This

information can help identify areas likely to experience
increased landslide risk in the future, allowing for early
interventions and targeted mitigation measures. Additionally,
future susceptibility mapping can ensure that communities
are better equipped to cope with the evolving challenges
brought on by climate change.

5. Conclusion

In this study, landslide susceptibility modeling and mapping
were done utilizing the XGBoost algorithm to spatially locate
the regions susceptible to landslides under the current and
projected future scenarios. The model was evaluated through
various metrics, such as Accuracy (93.8%), Precision (95.4%),
Recall (92.6%), F1-Score (93.7%), and AUC (98.1%), with the
results indicating the good performance of the algorithm.
Seven landslide susceptibility maps were developed
representing scenarios for SSP245 and SSP585 for the near
future (2021-2045), mid-future (2046-2070) and far
future(2071-0295), and the current (1990-2020) baseline
period. The results show an increase in the high and very high
landslide susceptible areas for both SSP scenarios against the
baseline period, with SSP585 far future scenario showing the
largest area of susceptibility. The increase in susceptible areas
indicates that an increase in rainfall due to climate change will
contribute to an increase in landslides in the future. While this
study only used rainfall as a dynamic factor, further research
can be done by utilizing both LULC and rainfall as dynamic
factors for the generation of landslide susceptibility maps
under future climate scenarios.
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