
Proceedings of 15th IOE Graduate Conference
Peer Reviewed

Year: 2024 Month: May Volume: 15
ISSN: 2350-8914 (Online), 2350-8906 (Print)

Enhancing NVMe Storage Performance with Latency-Aware User Layer
Semantics and Dynamically Adjusted Timeouts
Manish Gyawali a, Madhav Aryal b

a, b Department of Electronics and Computer Engineering, Pulchowk Campus, IOE, Tribhuvan University, Nepal
 a 076msdsa007.manish@pcampus.edu.np, b 074bct520.madhav@pcampus.edu.np

Abstract
Upon completing a request, an I/O device faces the decision of either minimizing latency by promptly issuing an interrupt or
optimizing throughput by delaying the interrupt, anticipating the completion of more requests soon and thus reducing the overall
interrupt cost. To achieve a balance between these conflicting objectives, devices employ adaptive interrupt coalescing heuristics.
However, these heuristics rely on static timeout and threshold values, leading to suboptimal performance in nonuniform IO workloads.
Furthermore, devices lack semantic information regarding the latency sensitivity of I/O requests, which can result in undesired
outcomes through interrupt coalescing. This paper proposes a method to enhance I/O device performance by enabling software to
specify the latency sensitivity of requests. Subsequently, the kernel can utilize this information to dynamically assemble interrupts
using adjusted timeout and threshold values. Additionally, we address the challenge of high interrupt rates and latency when all I/O
requests are marked as latency-sensitive. We introduce a dynamic timeout value based on the remaining IO requests, considering
the incoming IO request rate and the NVMe device’s IOPS capability to optimize performance. Our approach Further eliminates the
need for manual input of timeout and threshold values based on workload, instead utilizing an exponential-based correction factor.
Experimental result shows that adding the user layer semantics in IO request using correction factor for timeout increases IOPS by
13% in comparison to interrupt coalescing techniques provided with current NVMe devices.

Keywords
NVMe, Performance, Coalescing, Kernel, IOPS, Interrupt

1. Introduction

In the evolution of data storage technologies, traditional disks
once operated with seek times measured in milliseconds,
accommodating at most a few hundred interrupts per second.
This characteristic made interrupts a practical means to
facilitate software-level concurrency while circumventing
prohibitively high overheads. However, with the advent of
modern storage devices that utilize solid-state memory, a
paradigm shift has occurred. These advanced devices boast
the capability not only to sustain millions of requests per
second but also to handle multiple concurrent requests
simultaneously [1].

Figure 1 provides a simple overview, which shows how NVMe
requests are submitted and completed. It demonstrates how
this storage framework efficiently manages parallel operations.

A pivotal development in this context is the NVMe
(Non-Volatile Memory Express) specification, which exposes
the inherent parallelism of solid-state storage to software
applications. NVMe achieves this by providing multiple
queues, up to an impressive 64,000 per device, where requests,
each queue supporting up to 64,000 requests, can be
submitted and completed. This architectural enhancement
has prompted Linux developers to adapt, leading to a
substantial rewrite of the operating system’s block subsystem
to align with the multi-queue paradigm [2].

The ever-increasing performance of networking devices poses
a challenge for storage systems. For example, a typical
100Gbps network card can process more than 100 million

Figure 1: The problem of using original NVMe coalescing
which can introduce high delay and timeout increasing
latency.

packets per second, far exceeding the capabilities of current
storage devices like NVMe.

To address this challenge, the networking community has
developed two main strategies: interrupt coalescing and
polling[3]. Network devices use interrupt coalescing to
prevent the CPU from overwhelming with constant
interruptions. This technique groups a specific number of
packets (threshold) or waits for a timeout before triggering an
interrupt. Network stacks can also utilize polling, where
software actively queries packets to process instead of relying
on interrupt notifications. Additionally, technologies like

Pages: 88 – 94



Proceedings of 15th IOE Graduate Conference

DPDK and DDIO bypass the kernel and interrupts entirely by
exposing the device directly to applications in user space,
further enhancing polling efficiency.

The NVMe specification attempts to adapt interrupt
coalescing for storage devices, but it faces limitations. One
limitation is the coarse-grained timeout. NVMe only allows
one to set the aggregation time in 100 microsecond
increments, which is unsuitable for devices achieving sub-10
microsecond latencies. This can significantly amplify the
latency for small requests. Another limitation is the static
configuration of both the threshold and timeout. These
settings are fixed, making them ineffective for handling
workload variations. Coalescing can easily break if the
workload temporarily falls below the threshold.

Due to these limitations, the NVMe standard recommends
disabling interrupt coalescing by default. Software and driver
workarounds like interrupt completion threading and polling
are still necessary to manage interrupt storms. Real-world
deployments, like Azure, experience substantial latency
increases with aggressive coalescing and require driver
mitigation.

The ever-growing demand for data storage performance
presents a challenge for traditional storage systems. New
high-speed interconnects like NVMe allow applications to
submit millions of requests per second, but this surge in I/O
operations can lead to interrupt storms, overwhelming the
CPU and grinding the system to a halt.

Interrupt coalescing, a common technique that batches
requests into a single interrupt, has been explored to mitigate
interrupt storms [4, 5, 6]. However, this approach relies on
device-side heuristics that lack the semantic context to
understand the intent behind each request, potentially
leading to suboptimal performance.

This research extends a technique called "calibrating
interrupts" (cinterrupts) [7] to address the challenge of
managing exponentially increasing interrupt rates without
compromising latency. cinterrupts bridge the semantic gap
between hardware and software by adding two bits to requests
sent to the device. This calibration information allows
collaborative interrupt generation, ensuring timely
completion delivery while avoiding interrupt storms.
cinterrupts require minimal modifications to the device
firmware but necessitate changes to the operating system.

The semantic information plays a crucial role in cinterrupts’
effectiveness. The Linux kernel can automatically annotate
I/O requests with default calibrations based on the system
call that initiated the request [8]. In addition, an interface is
introduced to allow applications to override these defaults for
specific workloads [9].

Extensive evaluation through microbenchmarks showcases
the efficacy of cinterrupts. It achieves performance
comparable to state-of-the-art interrupt-driven approaches
while consuming significantly fewer CPU cycles per request
and improving throughput by up to 35% [10]. Furthermore,
even without application-level modifications, cinterrupts
utilizing default kernel calibrations demonstrate substantial
performance improvements for prominent database systems
like LevelDB and KVell. Benchmarks on uniform workloads

show throughput increases of up to 14% and latency
reductions of up to 28% compared to existing methods [10].

This paper extends Tai et al.’s [7] work on interrupt coalescing
timeout by addressing its limitations with static delta values,
particularly in variable workloads. In algorithm 1

Interrupts serve as a fundamental communication method
between the operating system and devices. Although they
enable concurrency and efficient completion delivery,
associated costs, including context switches, are well
documented[6, 11]. In storage, these costs have become
particularly significant with the advent of new interconnects
such as NVM ExpressTM (NVMe), which allows applications
to submit millions of requests per second and handle up to
65,535 concurrent requests[12]. However, the sheer number of
concurrent requests could lead to an interrupt storm,
potentially overwhelming the system. Given that the CPU is
already a bottleneck for achieving high IOPS, excessive
interrupts could severely limit the ability of software to fully
utilize current and future storage devices.

Figure 2: The problem of using original NVMe coalescing
which can introduce high delay and timeout increasing
latency.

Figure 2 shows the actual problem that we have under the
current approach. Problem can be described with following
points:

• NVMe coalescing uses static value for threshold and
timeout which can introduce worse case latency of
timeout for a IO request which is completed in very
small time and is very latency sensitive.

• Although Adaptive coalescing solves the above
mentioned problem upto a extent but c1 which is very
latency sensitive IO request need to wait until other X
request are completed to meet the threshold value
which might not be latency sensitive.

In the context of Linux systems utilizing NVMe devices, a
notable gap exists regarding balancing interrupt reduction
with latency management for latency-sensitive tasks.

Interrupt coalescing, a common technique for minimizing
interrupt frequency, can introduce latency for I/O requests.
This latency stems from waiting to accumulate a batch before
processing, potentially impacting the responsiveness of
latency-sensitive applications.

The gap arises as current approaches overlook latency
sensitivity at the application layer during interrupt coalescing.
These methods prioritize reducing interrupt overhead without

89



Enhancing NVMe Storage Performance with Latency-Aware User Layer Semantics and Dynamically Adjusted Timeouts

considering the distinct latency requirements of different I/O
requests.

Closing this gap requires a deeper understanding of how
interrupt coalescing affects diverse applications and
workloads. By integrating latency sensitivity at the application
layer, it’s possible to prioritize and manage I/O requests based
on their latency needs. This approach aims to minimize the
impact of interrupt storms on latency-sensitive tasks while
leveraging the efficiency gains of interrupt coalescing.

In summary, addressing this research gap highlights the
importance of a nuanced strategy in NVMe-based storage
systems. This involves incorporating latency sensitivity into
the application layer to optimize performance effectively.

Figure 3: Interrupt coalescing treats all IO request as same,
Here IOx can be latency sensitive but coalescing treats this
request similar to other which would decrease the
performance of application

2. Literature Review

The emergence of high-performance storage technologies,
exemplified by Non-Volatile Memory Express (NVMe) SSDs,
has prompted innovative approaches to optimize their
utilization. The paper on NVMeDirect by Kim et al. [13]
introduces a user-level I/O framework designed to enhance
the performance of NVMe SSDs. By enabling direct access
without kernel intervention, NVMeDirect effectively addresses
the limitations of traditional kernel-based I/O stacks. This
user-level framework not only facilitates improved
performance, surpassing kernel-based I/O in
microbenchmarks and applications such as Redis, but also
introduces flexibility for user applications to define their I/O
policies, including I/O completion methods, caching, and I/O
scheduling. The study provides a significant contribution to
the evolving landscape of storage system optimization,
emphasizing the importance of user-level frameworks in
unlocking the full potential of modern storage devices.

The integration of Berkeley Packet Filter (BPF) support in
Linux has streamlined the incorporation of kernel extensions.
Recent studies have explored the use of BPF to offload
sections of server applications, showcasing enhanced
performance and efficiency. However, a key question remains:

how to selectively identify components for offloading within
an application. The paper "Automatic Kernel Offload Using
BPF" [14] addresses this by highlighting the drawbacks of
blind offloading and advocating for an automated
decision-making process. The proposed solution involves a
compiler that analyzes application code, generating separate
kernel offload and userspace program executables. Challenges
associated with building this compiler are discussed, offering
a feasible approach to automate decision-making and
optimize BPF-based kernel offloading performance.

Zhong et al.’s paper on XRP [15] addresses the growing
challenge posed by the kernel storage stack as a bottleneck for
high-performance storage devices. The authors introduce XRP,
a solution leveraging BPF to offload storage functions to the
Linux kernel. However, this approaches has various security
issues and limited usability. This only works well when data is
stored in the predefined structures like B-trees.

Smotherman’s historical account [16] traces the evolution of
interrupts and their application across diverse computer
systems, commencing with UNIVAC in 1951. As network
bandwidth and storage device IO throughput have steadily
increased, the frequency of interrupts, and consequently, the
CPU overhead required to manage them, has followed suit
since the inception of the interrupt model. Despite
advancements in processor speeds and the proliferation of
cores, the persistent aim has been to minimize the overall
CPU overhead associated with interrupt handling. A notable
solution to address this challenge is interrupt coalescing, a
strategy that has proven highly effective in hardware
controllers. Numerous patents and scholarly papers have
delved into the implementation of interrupt coalescing for
both network and storage hardware controllers,
demonstrating its successful deployment and ongoing
relevance in contemporary computing environments.

In the examination of various interrupt handling schemes,
Salah et al. [17] conducted a comprehensive analysis
encompassing polling, regular interrupts, interrupt coalescing,
as well as disabling and enabling interrupts. Their findings
underscore the absence of a universally superior scheme
across all traffic conditions. This conclusion accentuates the
pressing need for adaptive mechanisms capable of
dynamically adjusting to prevailing interrupt arrival rates and
other workload parameters. Building on this premise, Salah
[18] performed an analytical and simulation study specifically
comparing the benefits of time-based versus
number-of-packets-based interrupt coalescing in the realm of
networking. Furthermore, Salah and Qahtan [19] contributed
to this discourse by implementing and evaluating a distinct
hybrid interrupt handling scheme tailored for Gigabit Network
Interface Controllers (NICs) within the Linux kernel version
2.6.15. Their hybrid approach seamlessly toggles between
interrupt disabling-enabling (DE) and polling, demonstrating
a commitment to addressing the intricate challenges
associated with interrupt management.

The paper presented by Amy et al. [7] sheds light on a critical
limitation associated with the existing NVMe interrupt
coalescing API, highlighting its impracticality for effective
coalescing. In response to this challenge, the authors propose
an adaptive coalescing strategy tailored specifically for NVMe.

90



Proceedings of 15th IOE Graduate Conference

A key insight from their research is the assertion that software
directives emerge as the optimal method for a storage device
to generate interrupts. The proposed solution, referred to as
Cinterrupts, combines the functionalities of Urgent, Barrier,
and an adaptive burst-detection strategy. By doing so,
Cinterrupts excels in generating interrupts precisely when the
workload necessitates them, thereby enhancing overall
performance even in dynamic environments. This novel
approach empowers the software stack to fully leverage the
capabilities of both existing and forthcoming low-latency
storage devices, thereby addressing a crucial aspect of
interrupt management in the context of NVMe technology.
However, the algorithmic design proposed in the paper does
not fully solve the problem which we try to solve in this
research.

3. Methodology

The core insight of this research is that device-level heuristics
for coalescing interrupts are limited because of a semantic
gap between the device, which sees a stream of requests, and
the requester, which knows which requests require interrupts
to unblock the application. To bridge this gap, the research
proposes that the application issuing the I/O request should
inform the device when it wishes to be interrupted.

The proposed solution, enhances adaptive coalescing with two
Flags:Urgent and Barrier, which software passes to the device.

Figure 4: Flags with Application layer semantics are
propagated to device driver , where coalescing algorithm acts
on it and generates a IPI: Inter Processor Interrupts for
coalesced IO requests

Urgent: Urgent Flag is used to request an interrupt for a single
request, allowing the device to generate an immediate
interrupt for any request annotated with Urgent. This is
particularly useful for calibrating interrupts for
latency-sensitive read requests, reducing latency without
generating unnecessary interrupts that could impact
throughput.

Barrier: Barrier Flag is used to calibrate interrupts for batches
of requests. It marks the end of a batch and instructs the
device to generate an interrupt as soon as all preceding
requests have finished. Unlike Urgent interrupts, Barrier
interrupts may have to wait if requests are completed out of
order. Barrier minimizes the interrupt rate, which is beneficial
for CPU utilization, while ensuring that the device generates
enough interrupts so that the application is not blocked.

Along with the introduction of Urgent and Barrier flag we have
implemented following algorithm to utilize the hybrid of
adaptive algorithm and addition of user layer semantics to
create bearable interrupts , throughput with low latency with
currently available static and adaptive interrupt methodology.

3.1 Algorithm

The proposed algorithm 1 represents an enhanced interrupt
coalescing mechanism designed to optimize the management
of interrupts in a dynamic computing environment. The key
motivation behind this algorithm is to efficiently handle
interrupt requests, balancing the need for timely completion
delivery and minimizing CPU overhead. The algorithm
operates based on the parameters ∆ and thr, denoting the
time interval and the coalescing threshold, respectively.

At its core, the algorithm 1 continuously monitors the system
for incoming interrupt completions. It dynamically adjusts
the timeout period based on the calculated delta, ensuring
adaptability to the current interrupt arrival rate and workload
conditions. Upon the arrival of a completion, the algorithm
evaluates its type, distinguishing between Urgent, Barrier, and
regular completions.

In the case of Urgent completions, the algorithm intelligently
decides whether to process only urgent requests (if
out-of-order processing is enabled) or handle all requests.
Barrier completions trigger immediate processing, while
regular completions contribute to a coalescing counter. The
algorithm 1 checks if the coalescing threshold is reached,
firing an interrupt and resetting the coalescing counter
accordingly.

The algorithm 1 introduces a quiescent period concept, where
if coalesced requests are pending, it initiates an interrupt to
address accumulated completions. This mechanism
optimizes interrupt handling, preventing unnecessary delays
and efficiently utilizing system resources.

A noteworthy feature of the algorithm is the calculation of ∆
using the COMPUTE∆ function. The delta computation is
dynamically adjusted based on the difference between the
specified threshold and the actual number of coalesced
requests. As demonstrated in Figure 5, the relationship
between ∆ and a a.k.a correction factor is that ∆ is influenced
by the exponential growth determined by correction factor in

91



Enhancing NVMe Storage Performance with Latency-Aware User Layer Semantics and Dynamically Adjusted Timeouts

Algorithm 1 Improved Coalescing Algorithm

Parameters: ∆,thr
coalesced ← 0
t i meout ← now +COMPUTE∆(thr, coalesced)
while true do

while now < timeout do
while new completion arrival do

t i meout ← now +COMPUTE∆(thr, coalesced)
if completion type == Urgent then

if out-of-order processing is enabled then
FIREURGENTIRQ()

else
FIREIRQANDRESETCOALESCED()

end if
else if completion type == Barrier then

FIREIRQANDRESETCOALESCED()
else

coalesced ← coalesced +1
if coal esced ≥ thr then

FIREIRQANDRESETCOALESCED()
end if

end if
end while
if coalesced > 0 then

FIREIRQANDRESETCOALESCED()
end if
coal esced ← 0
t i meout ← now +COMPUTE∆(thr, coalesced)

end while
end while
function COMPUTE∆(thr, coalesced)

a ← 0.1 ▷ Adjust the value of ’a’ as needed
return ea(thr−coalesced) −1

end function

the context of the given algorithm. Larger values of correction
factor will result in more rapid changes in ∆ concerning
changes in Available Coalescing Space, while smaller values of
correction factor will produce more gradual variations.
Adjusting correction factor allows you to control the sensitivity
of ∆ to changes in Available Coalescing Space.

Figure 5: The parameter a determines the rate at which the
exponential term grows. Higher values of a lead to a steeper
exponential growth, while lower values result in a more
gradual increase.

This adaptive approach ensures that the timeout period aligns
with the current workload, striking a balance between
interrupt responsiveness and CPU utilization. This algorithm
addresses the challenges posed by interrupt handling by
introducing adaptability through dynamic delta computation.
Its key contributions lie in the effective coalescing of
interrupts, minimizing CPU overhead, and optimizing
completion delivery in a diverse and dynamic computing
environment. The implementation for this research includes
Application layer and kernel layer modifications.

3.2 Kernel Modifications

The kernel exposes system calls to enable user layer
applications to perform actions on peripherals. For instance,
disk read/write operations cannot be directly executed by the
application layer; instead, the user layer application utilizes
system calls exposed by the kernel for these operations. In the
context of our research, we have made modifications to the
preadv2 and pwritev2 system calls. We extended these system
calls to allow the application layer to pass a one-bit
information through flags associated with these system calls.
This one-bit information is then propagated to the file system
layer, block layer, and eventually to the device driver (NVMe).
The NVMe driver attaches this information to NVMe
command flags, and the requests are then placed into the
submission queue. Once these I/O requests are processed,
they reside in the completion queue.

The algorithm described above needs to be implemented in
the NVMe firmware itself to perform coalescing and generate
interrupts accordingly. However, the firmware changes are not
within the scope of this research. Instead, we have emulated
the interrupt generation part using a completion queue
polling strategy in the device driver. A kernel thread is created
to poll the completion queue for requests, which are then
coalesced based on the algorithm discussed in this research
paper. When the timeout/threshold value is reached or the
interrupt generation condition is met, the NVMe driver
generates an Inter-Processer Interrupt (IPI). Since this
research utilizes a polling strategy, a dedicated CPU is used for
polling. This overhead could be avoided if the algorithm were
implemented directly in the firmware.

3.3 Application Layer Modifications

Macro benchmarking for this research utilized LevelDB, a fast
key-value storage library. Minor modifications were made to
the LevelDB disk read/write interface to accommodate the
research requirements. An option named enable_urgent was
introduced in LevelDB, which can be specified when creating
a database (DB) instance. When this option is enabled, all
foreground get/put operations are marked as urgent when
calling the preadv2 and pwritev2 system calls. In contrast,
background operations such as compaction, logging,
checkpointing, and backup/restoration are marked as
non-urgent I/O requests.

This approach allows for the prioritization of urgent operations,
ensuring that they receive timely attention while non-urgent
operations can proceed in the background without impacting
critical tasks.

92



Proceedings of 15th IOE Graduate Conference

3.4 Experimental Scenario

The experiment was conducted on a virtualized environment
running the Ubuntu 14.04 operating system. Amazon Web
Services (AWS) cloud services were leveraged as the
Infrastructure as a Service (IaaS) provider. The experiment
utilized the c5d.4xlarge EC2 instance type, which provides a
high-performance computing environment. This instance
type is equipped with 16 virtual CPUs (vCPUs), 32 GB of RAM,
and a high-speed 450 GB NVMe SSD storage device. To ensure
compatibility with the experimental setup, a modified kernel
was used. This modified kernel included changes in the nvme
driver, filesystem layer and block layer. The performance of
the system was evaluated using modified system calls preadv2
and pwritev2, The benchmarking process involved executing
these modified system calls under various conditions to assess
the Nvme performance.

4. Benchmarking

Micro Bench-marking of pread64 and pwrite64 sycalls with
variable workload , synchronous and asynchronous IO
operation has been carried out.

Figure 6 shows that the default configuration i.e interrupt per
IO request has very low latency but the interrupt rate is high
which can lead to interrupt storm and high cpu utilization
leading to low IOPS. Current nvme uses static coalescing
strategy with timeout value min to 20us and max 100us, we
evaluate adaptive strategy against the following
configurations: no coalescing (default), nvme100 (timeout of
100us, the minimum standard NVMe timeout), nvme20
(theoretical timeout of 20us), and nvme6 (theoretical timeout
of 6us), under these configurations the latency is high in
comparison to default strategy this is because every I/O
request are treated as same without considering the urgency
of these request to application layer, since these strategy uses
static timeout value Interrupt for I/O request has to wait until

Figure 6: The adaptive strategy exhibits superior performance
for uniform workload, irrespective of the configuration of
NVMe coalescing. This superiority is evident in various
aspects: (a) reduced latency for synchronous read requests, (b)
enhanced throughput for asynchronous read workloads
characterized by high iodepth, and (c) a lower interrupt rate
for asynchronous workloads. The labels in the results indicate
the performance improvement relative to the default
configuration.

timeout is reached or threshold value is reached , introducing
high latency.Adaptive strategy which we have utilized in this
research paper shows the latency metrics similar to the default
i.e no coalescing with reduced interrupt as compared to
default strategy, current available static coalescing algorithm
with 100us timeout and 10us timeout.This benchmark was
carried out by generating 4kb uniform read/write by 2 threads
with preadv2 and pwritev2 system calls present in Linux
systems.

Figure 7 shows that the adaptive coalescing strategy doesn’t
work well in varying workload scenario, this is because varying
workload can sometime generate burst of I/O request and
other time generate very low number of I/O request on the
system, under such workload adaptive strategy has increased
latency,this shows that any coalescing strategy used in kernel
without analyzing the application layer information will have
some problems in variable workload scenario. This benchmark
was carried out by generating burst of I/O workloads from a
thread and delayed workload from another thread.

Figure 8 illustrates how implementing cinterrupts can
enhance IOPS, lower latency, and decrease the number of
interrupts. This improvement is achieved through the

Figure 7: The adaptive strategy exhibits superior performance
for varying workload as well. But (a) latency has increased, (b)
async IOPS is decreased and (c) number of interrupts
decreased as compared to uniform workload.

Figure 8: Effect of cint and correction factor: The introduction
to calibrated interrupts based on user layer semantics(with
the use of urgent and barrier flags) (a)(b) improves IOPS, (c)
decreases latency and (d) decreases the number of interrupts.
Further, the introduction of a correction factor enhances (a)
(b) IOPS even further and (c) reduces latency more effectively.
However, (d) it slightly increases the number of interrupts.

93



Enhancing NVMe Storage Performance with Latency-Aware User Layer Semantics and Dynamically Adjusted Timeouts

utilization of user layer semantics flags, namely Urgent and
Barrier. However, with variable workloads, employing a static
delta may negatively affect IOPS. Therefore, by incorporating a
delta with a correction factor, as outlined in Algorithm 1, IOPS
is increased and latency is significantly reduced. Nonetheless,
it’s worth noting that this approach might lead to a slight
increase in the number of interrupts compared to using a
static delta.

5. Conclusion

In conclusion, our research highlights the substantial
limitations of the current NVMe interrupt coalescing
approach in practical coalescing strategies. Through our
investigation, we have developed an adaptive coalescing
approach for NVMe that effectively mitigates these
limitations.

Incorporating user layer semantics to define the latency
sensitivity of IO requests represents a significant advancement
in reducing system latency and interrupts. However, our
research has revealed that this approach, when combined
with traditional NVMe coalescing algorithms, is not effective
in scenarios with variable workloads or systems where the
majority of IO requests are latency-sensitive.

By introducing a timeout correction factor and dynamic
timeout calculation algorithm, we have demonstrated the
effectiveness of combining user layer information with our
adaptive interrupt coalescing strategy. Our findings indicate
substantial benefits over previous approaches, particularly in
environments with variable workloads.

In summary, our research contributes a novel approach to
NVMe interrupt coalescing that significantly improves system
performance and efficiency under diverse workload
conditions.

References

[1] John Uffenbeck and 8088 Family. The 80x86 Family:
Design, Programming, and Interfacing. Prentice Hall PTR,
USA, 2nd edition, 1997.

[2] Matias Bjørling, Jens Axboe, David Nellans, and Philippe
Bonnet. Linux block io: introducing multi-queue
ssd access on multi-core systems. In SYSTOR ’13
Proceedings of the 6th International Systems and Storage
Conference. Association for Computing Machinery, 22.
(Systor)., page 1, United States, 2013. Association for
Computing Machinery.

[3] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji
Prabhakar, Amin Vahdat, and Masato Yasuda. Less is
more: Trading a little bandwidth for ultra-low latency in
the data center. In Symposium on Networked Systems
Design and Implementation, 2012.

[4] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
Ix: a protected dataplane operating system for high
throughput and low latency. In Proceedings of the
11th USENIX Conference on Operating Systems Design
and Implementation, OSDI’14, page 49–65, USA, 2014.
USENIX Association.

[5] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard
Fellner, Clémentine Maurice, and Stefan Mangard. Kaslr
is dead: Long live kaslr. pages 161–176, 06 2017.

[6] Livio Soares and Michael Stumm. Flexsc: flexible system
call scheduling with exception-less system calls. OSDI’10,
page 33–46, USA, 2010. USENIX Association.

[7] Amy Tai, Igor Smolyar, Michael Wei, and Dan Tsafrir.
Optimizing storage performance with calibrated
interrupts. ACM Trans. Storage, 18(1), mar 2022.

[8] Microsoft Corporation. Microsoft documentation:
Optimize performance on the lsv2-series virtual
machines, 2019. Accessed: May, 2021.

[9] K.R. Fall and W.R. Stevens. TCP/IP Illustrated: The
Protocols, Volume 1. Addison-Wesley Professional
Computing Series. Pearson Education, 2011.

[10] Fernando Gont. Survey of security hardening methods
for transmission control protocol (tcp) implementations.
Technical report, Internet Engineering Task Force, March
2012.

[11] Adam Belay, George Prekas, Mia Primorac, Ana Klimovic,
Samuel Grossman, Christos Kozyrakis, and Edouard
Bugnion. The ix operating system: Combining low
latency, high throughput, and efficiency in a protected
dataplane. ACM Trans. Comput. Syst., 34(4), dec 2016.

[12] Intel. ntel-ssd-dc-p3700-series-400gb-1-2-height-pcie-3-
0-20nm-mlc. OSDI’10. Intel Corporatiom, 2021.

[13] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim.
Nvmedirect: A user-space i/o framework for application-
specific optimization on nvme ssds. 2016.

[14] Farbod Shahinfar, Sebastiano Miano, Giuseppe
Siracusano, Roberto Bifulco, Aurojit Panda, and Gianni
Antichi. Automatic kernel offload using bpf. Workshop
on Hot Topics in Operating Systems (HOTOS ’23), 2023.

[15] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas,
Jeffrey Tao, Evan Mesterhazy, Michael Makris, Junfeng
Yang, Amy Tai, Ryan Stutsman, and Asaf Cidon. Xrp: In-
kernel storage functions with ebpf. 2022.

[16] M. Smotherman. Interrupts, 2008.

[17] K. Salah, K. El-Badawi, and F. Haidari. Performance
analysis and comparison of interrupt-handling schemes
in gigabit networks. Comput. Commun., 30(17):3425–
3441, 2007.

[18] K. Salah. To coalesce or not to coalesce. Intl. J. of Elec.
and Comm., pages 215–225, 2007.

[19] K. Salah and A. Qahtan. Implementation and
experimental performance evaluation of a hybrid
interrupt-handling scheme. Comput. Commun.,
32(1):179–188, 2009.

94


	Introduction
	Literature Review
	Methodology
	Algorithm
	Kernel Modifications
	Application Layer Modifications
	Experimental Scenario

	Benchmarking
	Conclusion
	References

