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Abstract
Sugarcane is a globally significant crop, primarily cultivated for sugar and ethanol production. One of the prominent challenges
in the sugar industry is the prevalence of sugarcane diseases, leading to substantial financial setbacks for small-scale farmers if
not addressed promptly, often resulting in the removal of affected crops. The adoption of deep learning techniques has garnered
increasing attention in the realm of research on crop disease classification. In this research, we present an approach to classifying
sugarcane leaf diseases utilizing MobileNetV2 with an enlarged receptive field to extract features, coupled with XGBoost, CatBoost,
and LightGBM as classifiers. The model is trained and assessed on a dataset comprising sugarcane leaf images categorized
into five classes: healthy, mosaic, red rot, rust, and yellow leaf. The proposed MobileNetV2 outperformed baseline MobileNetV2
and other traditional models. When utilizing the proposed MobileNetV2 as the feature extractor, CatBoost acheived better results
compared to XGBoost and LightGBM classifiers. The soft voting ensemble of these classifiers yielded the best overall performance.
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1. Introduction

Sugarcane is a vital cash crop, playing a crucial role in the
global economy and serving as a primary source of sugar
production. Nevertheless, numerous challenges hinder the
sustainable development of sugarcane, with one major
obstacle being the prevalence of various diseases that
adversely affect both the quality and production of the crop.
The overall health of the sugarcane crop can be significantly
compromised by any of these diseases that inflict damage on
sugarcane leaves.

The timely identification and precise categorization of
sugarcane leaf diseases are crucial for deploying efficient
disease control measures. Conventional disease diagnosis
methods typically involve visual examination by seasoned
agronomists, a process that is often time-consuming,
subjective, and susceptible to human mistakes. However,
recent progress in computer vision and machine learning
methodologies has introduced opportunities for automating
the detection and classification of diseases in agriculture,
offering a more streamlined and objective approach.

The advancement of DL models in diagnosing plant diseases
holds promise for enhancing crop production and minimizing
yield losses. The integration of image-processing techniques
and ML has notably enhanced the accuracy of plant disease
diagnosis[1]. This approach offers potential solutions to
challenges faced by both humans and plants. Artificial
Intelligence (AI) has made it possible for people to
communicate with computers and comprehend their needs.
By comparing photos of damaged and healthy foliage, image
recognition is essential for recognizing diseased leaves[2]. For
this, conventional image processing techniques including
segmentation, feature extraction, and categorization have
been applied. But DL has become more popular in

agricultural research because it can extract more complex
feature data than traditional ML algorithms [3].

Transfer learning on pre-trained SOTA models such as VGG-19,
Resnet, Mobilenet, etc are proven to excel in classification
fields. Hybrid models with the pre-trained model as feature
extractor and other ML and DL algorithms as classifiers have
also had significant accuracy on image classification. Gradient
boosting methods (XGBoost, LightGBM, CatBoost) are
commonly used machine learning algorithms and achieve
state-of-the-art in some classification tasks. The integration of
ensemble methods in deep learning has been a subject of
extensive research, garnering significant attention due to their
capacity to boost predictive performance by leveraging the
diverse strengths of multiple learners. This approach is
particularly relevant in the context of image classification
tasks, where ensemble models have demonstrated remarkable
efficacy in enhancing accuracy and robustness. In the domain
of plant leaf disease detection, a transfer learning-based deep
ensemble neural network has proven to be more effective than
its constituent pre-trained models alone, showcasing the
potential of ensemble strategies in handling complex
classification tasks with high-dimensional data.

The major contribution of this research are as follows:

• A lightweight MobileNetV2 with increased receptive
field on the last inverted residual block using dilated
convolution is employed as a backbone feature
extractor and gradient boosting methods as classifier.

• The study evaluated the effectiveness of XGBoost,
CatBoost, and LightGBM classifiers when employed
with the customized MobileNetV2 as the feature
extractor. Additionally, a soft voting ensemble
technique incorporating these classifiers, yielding
improved classification outcomes is introduced.
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2. Related Works

The classification of plant leaf diseases has seen extensive
exploration with the advancement of deep learning
methodologies. Sammy V. Militante and Bobby D. Gerardo [4]
employed Convolutional Neural Networks (CNN) to classify
sugarcane leaf diseases. The authors gathered a dataset
comprising 13,482 images of both healthy and diseased leaves.
Their proposed model attained an impressive accuracy of 95%
on this dataset. Ramadhani el at.[5] carried out comparison of
deep CNN with MobileNetV2 was for the detection of chilli
diseases. DeepCNN had an accuracy of 0.8223 where as
MobileNetV2 had 0.9151. Mahesh el at.[6], carried out
comparison of MobileNetV2 with different pre-trained models
on plant village dataset. MobileNetV2 performed better than
Resnet50 and InceptionV3. Shanwen Zhang el at.[7] proposed
a cucumber leaf disease identification model based on
AlexNet. The benefits of global pooling and dilated
convolution are combined in the suggested model. Dilated
convolution kernel was used in place of the original
convolution kernel in AlexNet’s Conv1 convolution. Fully
connected layers after conv5 was replaced by global pooling
layer. The proposed model achieved an accuracy of 94.65
whereas AlexNet had an accuracy of 92.48. Swapnil el at.[8]
proposed an ensemble model of CNN and CNN with spatial
attention on custom collected dataset. 2569 images of healthy
and diseased leaves were categorized into 5 classes. Also
comparison of the proposed model with pre-trained models
such as VGG19, ResNet50, Xception, MobileNetV2,
EfficientnetB7 were carried out. MobileNetV2 achieved the
highest accuracy among the pre-trained models.

The proposed model had an accuracy of 0.8653 which
outperformed all the SOTA pre-trained models. Kaur el at.[9]
proposed a hybrid architecture for leaf disease recognition .
VGG-16 and MobileNet were used for transfer learning.
Stacking ensemble learning approach was used to merge
models. The proposed model performed better than
compared pre-trained models.Transfer-learning based deep
ensemble was proposed by Vallabhajosyula et al.[10] on plant
leaf dataset. The model used ensemble of pre-trained resnet,
inceptionv3, nasnet mobile and densenet. The ensemble
model demonstrated superior accuracy compared to
individual models. Kannan et al. [11] introduced a hybrid
approach for detecting rice plant diseases. Their proposed
model utilized Inception-ResNetV2 for feature extraction and
employed XGBoost ensemble as a classifier. Remarkably, it
achieved an accuracy of 99.4% and a precision of 0.965. The
preprocessing stage incorporated the use of a Weiner filter.
The authors conducted a comprehensive comparison of the
model’s performance against various machine learning and
deep learning algorithms, including SVM, decision tree, KNN,
AlexNet, VGG16, and InceptionV3. Their proposed model
outperformed all the other models in the comparison.

3. Methodology

3.1 Dataset Preparation

3.1.1 Dataset

Plant village [12] is one of the largest available public dataset

on plant leaf disease. But it doesn’t include sugarcane plant.
This research used the sugarcane leaf disease dataset collected
by Daphal and S.M. Koli[8]. Total 2569 RGB images were
collected and classified into five different classes. Every
photograph was taken in the field from various locations in
New Delhi and West Bengal, India.

Table 1: Dataset labels and no. of samples

Class Number of samples
Healthy 520
Rust 514
Red rot 519
Yellow 505
Mosaic 511

The dataset comprises five distinct classes, namely healthy,
rust, red rot, yellow, and mosaic. It is a well-balanced dataset,
with each class containing a specific number of images.
Specifically, there are 520 images depicting healthy leaves, 514
images showcasing leaves affected by rust, 519 images
illustrating leaves affected by red rot, 505 images displaying
yellow leaves, and 511 images depicting leaves affected by the
mosaic virus.

3.1.2 Dataset Split

We divided the dataset into three separate subsets: the
training set, validation set, and test set, to make the creation
and evaluation of the machine learning model easier. In the
beginning, we used the commonly used 80:10:10 split,
dividing the data into three categories: training (80%),
validation (10%), and test (10%).

The 80:10:10 split was used as the starting point for training
and assessing the model’s effectiveness. However, more
assessments were carried out utilizing wider test set splits in
order to fully evaluate the model’s robustness and
generalization capacity. Specifically, two different test set
splits 70:15:15 and 60:20:20 were used to assess the model’s
performance.This split highlighted even more how crucial it is
to assess the model’s performance on a wide variety of
previously unseen data, since this will give valuable insights
into how well the model generalizes to various contexts.

Figure 1: Block diagram of proposed methodology
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Figure 2: Dataset Samples

3.1.3 Dataset Preprocessing and Augmentation

All images were resized to a uniform dimension of 224x224
pixels, ensuring consistency across the dataset. Subsequently,
a normalization process was applied to the pixel values,
typically scaling them to a standardized range. This
normalization step is essential for facilitating smoother
convergence during the training process.

Apart from resizing and normalization, multiple
augmentation approaches were utilized to supplement the
training dataset, therefore improving its resilience and
diversity. These augmentation methods consist of color
jittering, flipping, rotation, scaling, and translation. Flipping
involves creating mirror images of the original data by
horizontally or vertically flipping the images. Rotation
introduces variability in perspective by randomly rotating
images by certain angles. Scaling alters the size of images,
allowing the model to learn from examples at different
distances or zoom levels. Translation shifts images
horizontally or vertically, simulating changes in position or
viewpoint. Finally, color jittering applies small, random
perturbations to the color channels, introducing variations in
color and brightness.

3.2 Feature Extrator

The proposed model uses modified MobileNetV2[14] refered
as dilated MobileNetV2 for feature extraction. MobileNetV2 is
a deep learning model architecture designed for mobile and
edge devices. It is a lightweight and efficient neural network
architecture developed by Google. MobileNetV2 is an
improvement over its predecessor, MobileNet[15], and is
specifically optimized for tasks like image classification, object
detection, and semantic segmentation in
resource-constrained environments.

The inverted residual block are the basic building blocks in
MobileNetV2. It consists of an expansion layer, depthwise
separable convolution, projection layer, and skip connection.
It begins with expanding the input tensor’s channels using a
1x1 convolution, followed by a depthwise separable
convolution that significantly reduces computational costs

Figure 3: Pyramid Depth-Wise Dilated Separable Convolution
Block[13]

while preserving representation capacity. A projection layer
also known as bottleneck layer then decreases the
dimensionality of the feature maps for computational
efficiency. Finally, a skip connection as in Resnet[16] aids in
information flow and gradient propagation, facilitating the
training of deeper networks.

We replaced the last inverted residual block of MobileNetV2
with Pyramid Depth-Wise Dilated Separable Convolution as
proposed in [13]. This block increased the receptive field
using concatenation of three 3*3 depthwise dilated layer with
dilation rates 1,2 and 3 instead of standard 3*3 depthwise layer
in the inverted residual block as shown in Figure 3. Dilated
convolution is a convolutional operation with a defined "hole"
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or spacing between the values in the kernel. This hole is
introduced by inserting zeros in the kernel, allowing the
convolutional operation to have a larger receptive field
without increasing the number of parameters. By adding zeros
between the values of the kernel, the spacing, or dilation rate,
is increased.

3.3 Classifier

In this research, three distinct gradient boosting classifiers
were employed. Gradient boosting methods work by
sequentially training a series of weak learners, such as
decision trees, in an additive manner. Initially, features
extracted from the dilated MobileNetV2 model were
individually fed into XGBoost, CatBoost, and LightGBM
classifiers. Each classifier operated independently on the
extracted features. Following this, soft voting was conducted
to combine the predictions from the three classifiers into a
final classification decision. In this approach, each classifier
generates a probability estimate for every class. These
probabilities are then averaged across all classifiers to
determine the final probability for each class. Subsequently,
the class with the highest calculated probability is selected as
the consensus among the ensemble of classifiers.

3.3.1 XGBoost

XGBoost [17], short for eXtreme Gradient Boosting, stands as a
robust and efficient machine learning algorithm crafted for
supervised learning endeavors. This method extends trees in a
level-wise fashion, continuously segmenting features. Each
tree identifies the feature and threshold that yield the most
significant enhancement in branching and proceeds to
execute the split. Essentially, XGBoost surpasses traditional
decision trees by employing classification and regression trees
as base learners, sequentially amalgamating multiple tree
predictions through gradient boosting to minimize errors.
Weights play a pivotal role in XGBoost, as they are assigned to
all independent variables, which are subsequently input into
the decision tree for result prediction. The weight of variables
inaccurately predicted by the tree is increased, and these
variables are then forwarded to the subsequent decision tree.
These individual classifiers then converge to produce a robust
and more accurate model.

3.4 CatBoost

CatBoost[18] is a gradient boosting library that is specifically
designed for categorical feature support. CatBoost operates as
a gradient boosting algorithm, leveraging an ensemble of
decision trees to make predictions. What sets CatBoost apart
is its specialized handling of categorical features, a feature
often challenging for traditional boosting methods. The
algorithm employs a technique known as "Ordered Boosting,"
which involves sorting categorical features by their statistical
properties before constructing decision trees. This approach
enables CatBoost to create more informed splits, effectively
addressing the unique challenges posed by categorical data.
During training, CatBoost iteratively builds a sequence of
decision trees, with each tree aiming to correct the errors of
the ensemble’s preceding trees.

3.5 LightGBM

LightGBM [19], also known as Light Gradient Boosting
Machine, represents a high-performance gradient boosting
framework developed by Microsoft. Renowned for its
efficiency, scalability, and speed, LightGBM is particularly
well-suited for managing large datasets and intricate machine
learning tasks. It belongs to the family of decision tree-based
ensemble methods, where numerous weak learners, typically
decision trees, are amalgamated to construct a robust
predictive model. LightGBM sets itself apart through its
distinctive histogram-based learning approach, enabling it to
effectively handle categorical features and execute tree
construction in a manner that minimizes memory usage.
Moreover, LightGBM adopts a leaf-wise growth strategy,
expanding the tree by selecting the leaf with the maximum
delta loss during each iteration, thereby enhancing its
computational speed.

4. Results and Discussion

4.1 Model Training Details

The model was trained on a Kaggle Notebook using a GPU
P100 accelerator. Python version 3.10.13 was utilized for
implementing the model. Layers 0 through 16 of MobileNetV2
were set to be untrainable, while layers 17 and 18, serving as
feature extraction layers, were unfrozen for training. Training
made use of the Adam optimizer, and the loss function
employed was multi-class cross-entropy. We tuned the
settings of the model by experimenting with different
combinations of hyperparameters. We adjusted the learning
rate to 0.00001 and batch sizes of 32 and 64. Additionally, we
varied the dropout rates between 0.25 and 0.5 to optimize the
model’s performance. The model was trained with a patience
of 3 epochs to prevent overfitting. The hyperparameter tuning
was conducted using an 80:10:10 dataset split for training,
validation, and testing, respectively. We also conducted k-fold
validation for our model. Initially, we split the dataset into 90%
for training and 10% for testing unseen data. Then, within the
training data, we divided it into 9 folds. For each iteration, 8
folds were used for training the model, while the remaining
fold was used for validation. We utilized the model with the
most effective hyperparameters to extract features, which
were then inputted into XGBoost, CatBoost, and LightGBM
classifiers.

4.2 Results

Table 2 presents the results obtained from training the model
using different sets of hyperparameters. Notably, the model
trained with a batch size of 32, dropout rate of 0.5, and a
learning rate of 0.00001 achieved the highest accuracy. Since
the dataset was balanced, accuracy was chosen as the main
metric for assessing the model’s performance.

Table 3 shows the results of k-fold cross-validation process
involved iteratively training and validating the model over 9
folds. Throughout the iterations, validation accuracies ranged
from 0.956 to 0.972, showcasing the model’s performance
variability across different subsets of the data. Test accuracies,
on the other hand, fluctuated between 0.968 and 0.98,
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Table 2: Experiment Results on dilated MobileNetV2

Batch Size Dropout Accuracy Precision Recall F1 Score

32 0.25 0.9722 0.973 0.9723 0.9724

32 0.5 0.9762 0.9788 0.9753 0.9760

64 0.25 0.9762 0.9764 0.9762 0.9762

64 0.5 0.9722 0.9734 0.9715 0.9719

indicating the model’s effectiveness in generalizing to unseen
data.

Table 3: K-fold cross validation results on dilated MobileNetV2

Iteration Validation Accuracy Test Accuracy

1 0.964 0.968

2 0.968 0.98

3 0.956 0.976

4 0.964 0.976

5 0.956 0.98

6 0.964 0.98

7 0.964 0.968

8 0.968 0.968

9 0.972 0.976

We used the features extracted from the dilated MobileNetV2
model, specifically focusing on the output of its average
pooling layer, as inputs for training three different classifiers:
XGBoost, CatBoost, and LightGBM. Additionally, we
performed soft voting, combining predictions from these
classifiers to make final decisions. Table 4 offers a
comprehensive overview of the performance metrics for three
different classifiers: XGBoost, CatBoost, LightGBM, and soft
voting ensemble of these classifiers. Each classifier’s accuracy,
precision, recall, and F1 score are listed, providing valuable
insights into their effectiveness in classifying instances within
the dataset.

Table 4: Performance of Dilated MobileNetV2 with different
classifiers

Classifier Accuracy Precision Recall F1 Score

XGBoost 0.9762 0.9774 0.9753 0.9757

CatBoost 0.9802 0.9816 0.9793 0.9799

LightGBM 0.9563 0.9541 0.9577 0.9548

Soft Voting 0.9802 0.9811 0.9793 0.9796

Among the individual classifiers injunction with dilated
MobileNetV2, CatBoost exhibits the highest accuracy of
0.9802, closely followed by Soft Voting, which achieves the
same accuracy. This suggests that CatBoost performs
exceptionally well as a standalone classifier. XGBoost also
delivers commendable accuracy at 0.9762, while LightGBM
achieves a slightly lower accuracy of 0.9563.

We also evaluated the model on larger portions of the test set,
specifically using splits of 70:15:15 and 60:20:20. The
performance of the models on various dataset split is shown in
Table 5 Among the individual classifiers, CatBoost showed the

Table 5: Accuracy of the classifiers using dilated MobileNetV2
feature extractor on different dataset split

Dataset Split FCN XGBoost Catboost LightGBM Soft Voting

80:10:10 0.9762 0.9762 0.9802 0.9563 0.9802

70:15:15 0.9550 0.9629 0.9656 0.9576 0.9682

60:20:20 0.9623 0.9642 0.9662 0.9603 0.9682

best performance when paired with the dilated MobileNetV2
feature extractor, followed by XGBoost and LightGBM on each
split. The soft voting ensemble produced similar results as the
CatBoost classifier in the 80:10:10 split but performed better
than all the classifiers on 70:15:15 and 60:20:20 splits.

Table 6: Performance comparison of different models

Model Accuracy

MobileNetV2 0.9365

Dilated MobileNetV2 0.9762

Proposed Model 0.9802

CNN + CNN with spatial attention[8] 0.8653

AlexNet[20] 0.8750

DarkNet-53[20] 0.8730

GoogLeNet[20] 0.8750

ResNet50[20] 0.8570

VGG-19[20] 0.9220

4.3 Comparison with other models

In addition to training the proposed dilated MobileNetV2
model, we also trained a baseline pretrained MobileNetV2
using the same settings. The MobileNetV2 model achieved an
accuracy of 0.9365. We also included models from other
authors for comparison. The accuracy scores of various
models in sugarcane leaf disease classification are
summarized in Table 6. The proposed model outperformed
the work conducted by Daphal et al. [8], achieving superior
results. The authors employed a stacking ensemble
comprising two networks: a sequential CNN and a CNN
incorporating spatial attention, resulting in an accuracy of
0.8635. Among these models, the proposed model achieves
the highest accuracy of 0.9802, surpassing all others.

Figure 4: Accuracy curve for dilated MobileNetV2
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Figure 5: Loss curve for dilated MobileNetV2

Figure 6: Confusion matrix for dilated MobileNetV2

Figure 7: Confusion matrix for XGBoost classifier

Figure 8: Confusion matrix for Catboost classifier

Figure 9: Confusion matrix for LightGBM classifier

Figure 10: Confusion matrix for soft voting
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5. Conclusion

Our research presents a comprehensive approach for
sugarcane leaf disease classification using MobileNetV2 with
dilated depthwise convolution as a feature extraction method
and XGBoost, CatBoost, and LightGBM as classifiers. Increase
in receptive field of MobileNetV2 in the last residual block can
enhance the feature extraction capability of the model.
Through extensive experimentation and evaluation on a
diverse dataset, we have demonstrated the effectiveness of our
proposed model in accurately identifying sugarcane leaf
diseases.

The achieved accuracy of 98.02% surpasses the stacking
ensemble of sequential CNN and CNN with spatial attention
[8], baseline MobileNetV2 and traditional models such as
AlexNet, DarkNet-53, GoogLeNet, ResNet50, and VGG-19. In
the 80:10:10 split of the dataset, CatBoost, when utilized with
dilated MobileNetV2 as feature extraction, yielded the most
optimal outcome, matching the performance achieved by the
soft voting ensemble of XGBoost, CatBoost, and LightGBM
classifiers. However, our analysis of various dataset splits
indicates that the soft voting ensemble of probabilities derived
from XGBoost, CatBoost, and LightGBM classifiers can
notably enhance classification accuracy.

In order to further enhance classification performance, future
research projects might concentrate on enlarging the dataset
to encompass a wider variety of sugarcane leaf diseases and
investigating different deep learning architectures and
ensemble methodologies.
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