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Abstract
Reliability can be considered as the capability of system to survive. Currently, consumers are demanding reliable and cheaper
power supply with reduced interruption duration. It’s widely acknowledged that nearly 90% of electricity interruptions generates from
faults within the electric distribution system. Integration of Distributed Generations (DG) into distribution network can significantly
enhance its reliability in several ways such as redundancy, reduced transmission losses, voltage support, load sharing, resilience to
disasters, peak shaving, islanded operation, flexibility and modularity. Artificial Neural Network (ANN) is used to obtain the optimal
location of DG based on the minimum values of reliability indices SAIFI, SAIDI and EENS for which inputs are taken as average load,
distance from the feeder, number of customers connected. Electrical Transient Analyzer Program (ETAP) is a software tool widely
used for the design, analysis, and operation of power systems. When it comes to reliability evaluation of distribution networks, ETAP
offers several advantages such as comprehensive analysis, reliability indices calculation, fault analysis and simulation, load flow
analysis, optimization and planning, integration with other modules etc. Reliability was enhanced in the Udipur substation feeder
following the placement of Distributed Generation (DG) as determined by Artificial Neural Networks (ANN). This improvement is
evident in the system reliability indices, with a decrease in SAIFI, SAIDI by approximately 48% and 28% respectively. Furthermore,
there was an improvement in terms of Cost of Reliability Indices, with a reduction in EENS by approximately 29%. The radial
distribution network of the Roy Billiton Test System (RBTS) connected at bus-2 and 33/11KV Udipur Substation Outgoing feeders is
used as a case study, where different types of loads such as Residential, Commercial, Industrial and Governmental & Institutional
are connected.
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1. Introduction

The Reliability evaluation of a distribution system primarily
focuses on how well it performs at the customer’s end, where
electricity demand is met. Key indicators used for predicting
this reliability include the average failure rate at load points,
the typical duration of outages experienced by customers, and
the yearly cumulative outage time, or unavailability [1]. These
indices are crucial for understanding reliability from both the
customer’s perspective and the utility’s viewpoint. However,
they don’t offer a comprehensive overview of system
performance. To achieve a more holistic understanding,
additional indices can be derived from these basic indicators,
considering the number of customers or loads connected at
each load point in the system. Many of these additional
indices are weighted averages of the fundamental load point
indices. Among the most prevalent system-level indices are
SAIFI, SAIDI, CAIFI, CAIDI, ASAI, ASUI, ENS, and AENS.
Utilities often calculate these indices based on historical
interruption data, offering valuable insights into past system
performance [1].

Distributed Generation (DG) refers to electric-power
generating units installed in close proximity to load centers.
This strategic placement of DG units allows for the bypassing
of electric power transmission lines, effectively bringing power

generation closer to the areas of demand. In contrast, a
conventional electric supply system operates on a centralized
model, consisting of generating units, transmission lines, and
a distribution network. However, this conventional power
system exhibits poor reliability owing to its complex
configuration. A fault occurring at a single location within the
system can trigger the entire feeder to trip, resulting in
disruption to all consumers connected to that feeder [2]. An
Artificial Neural Network (ANN) is an advanced machine
learning technique inspired by the human capacity for
imitation or learning through observation and replication [3].
Among the many types of artificial neural network (ANN)
methodologies, the backpropagation (BP) learning algorithm
has emerged as highly favored in engineering applications.
This type of network typically comprises three layers: an input
layer, a hidden layer, and an output layer. To effectively train
and evaluate neural networks, datasets containing input
patterns and corresponding targets are essential. When
developing an ANN model, the available dataset is typically
split into two subsets. The majority portion (around 70-80% of
the data) is used for training the network, while the remainder
is reserved to assess the network’s ability to generalize beyond
the training data [3]. Understanding different aspects of
reliability is crucial when assessing the availability of power
supply within a distribution system. One key reliability
measure of significance is the failure rate of the distribution
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system. This index provides fundamental insight into the
system’s reliability and its ability to consistently deliver
electricity without interruptions or breakdowns [4].

The training function of the feed-forward backpropagation
network utilizes the Bayesian Regularization algorithm to
update weight and bias values. This methodology is
particularly suitable for training Neural Networks (NN),
employing the mean squared error (MSE) as a performance
metric. The backpropagation learning rule, integral to this
process, is a continuous stochastic optimization technique
aimed at minimizing the MSE between the actual and desired
output. [5]. The Levenberg-Marquardt algorithm (LMA), is
adopted for training the network. This algorithm takes less
time as training process automatically stops when
generalizations stop improving as indicated by increase in
Mean Square Error of validation samples. To maximize this
improvement, placing DG units far from feeder rather than
placing it close to load center [6].

The Udipur Substation, situated in Lamjung district of Nepal,
is connected to a distribution network comprising four radial
feeders: the Besisahar feeder, Bhoteodar feeder, Okhari feeder,
and Nayagaun feeder. These feeders serve a total of 36,454
customers of various types. The combined radial length of
these feeders extends to 129.5 kilometers, with an additional
112 kilometers comprising the lateral lengths. The radial
sections utilize Rabbit conductors with a 50 mm²
cross-sectional area, while the lateral sections use Weasel
conductors with a 30 mm² cross-sectional area. Data on
feeder tripping frequency and outage duration were collected
over the year from 2079-07-01 to 2080-06-30. This data was
used to calculate failure rates and Mean Time to Repair
(MTTR) for each of the four feeders, and these data were
subsequently integrated into the ETAP 19.0.1 software for a
reliability assessment. The average load handled by the
Udipur Substation is 3.412 MW, with the Besisahar feeder
bearing the highest load among the four feeders.

2. Reliability Indices

2.1 Load Point Reliability Indices

Failure Rate (λ): Failure/ year/Km[5]

λ=
n∑

i=1
λi (1)

Annual Outage Duration(U): Hours/year.[5]

U =
n∑

i=1
ri ∗λi (2)

Average Outage Duration (r): Hours/failure[5]

r =
∑n

i=1 ri ∗λi∑n
i=1λi

= U

λ
(3)

2.2 System Reliability Indices

System Average Interruption Frequency Index (SAIFI):
Failure/ year. Customer
SAIFI represents the average number of interruptions

experienced by each utility customer within a specified
analysis period. Typically, SAIFI is measured over the span of a
year.[5]

SAIFI =
∑n

i=1 Ni ∗λi∑n
i=1 Ni

(4)

System Average Interruption Duration Index (SAIDI): Hours/
year.Customer
SAIDI represents the average duration of all interruptions
experienced by each utility customer over the analysis
period.[5]

SAIDI =
∑n

i=1 Ni ∗Ui∑n
i=1 Ni

(5)

Customer Average Interruption Duration Index (CAIDI):
Hours/ Failure
It is the average time needed to restore service to the average
customer per sustained interruption.[5]

CAIDI = SAIDI

SAIFI
(6)

Average Service Availability Index (ASAI):
ASAI is the ratio of the total number of customer hours that
service was available during a given time period to the total
customer hours demanded. It is normally expressed in
percentage.[5]

ASAI = 1− SAIDI

8760
(7)

2.3 Cost Worth Reliability Indices

Expected Energy Not Supplied (EENS): MWhr /year
EENS Specifies the average energy that is not supplied to the
customer in the predefined time.[5]

EENS =
n∑

i=1
Ui ∗Li (8)

Expected Cost of Interruption (ECOST):$/year
It may be defined as the cost of EENS. It is calculated as the
product of EENS and its cost per KWhr.[5]

ECOST =
n∑

i=1
λi ∗Ci ∗Li (9)

3. Methodology

In this research study, an evaluation of the reliability of
contemporary distribution networks was carried out by
incorporating a DG source, simulated using the Electrical
Transients and Analysis Program (ETAP), followed by an
analysis of its effects. Various experiments employing a hit
and trial approach were performed to determine the best
placement within the distribution system. After that, an ANN
technique was used to find the optimal location for the DG.

In this research, the focus is on utilizing the feedforward
backpropagation Neural Network (NN) among various ANN
techniques, which is particularly effective for addressing
fitting problems. This NN architecture comprises three layers:
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input, hidden, and output layers. To train and validate the
network, input data patterns along with corresponding output
data are essential. During the development phase of the ANN
model, the available data is divided into three sets.
Approximately 70% of the data is allocated for training the
network, 15% is reserved for validation purposes, and the
remaining 15% is used specifically for testing the performance
of the NN.

In this study, the research involves employing the tan-sigmoid
transfer function within both the hidden and output layers of
the neural network. Specifically, for RBTS Bus-2 and the
33/11KV Udaipur Substation feeders, the hidden layers consist
of 10 and 20 neurons respectively, while there is 1 neuron in
the output layer and 3 neurons in the input layer. The
feedforward backpropagation network is trained using the
Levenberg-Marquardt algorithm, which iteratively updates
the weights and biases to optimize network performance. The
primary objective is to minimize the Mean Squared Error
(MSE) between the actual and desired output values. The MSE
serves as a continuous stochastic optimization metric, guiding
the network towards more accurate predictions and improved
performance.

MSE = 1

n

i=1∑
n

(Oi −Ok )2 (10)

Where, Oi is the output obtained of the i th pattern, Ok is the
desired output of the the k th pattern and n is the count of
patterns. The methodology was applied and validated using
RBTS bus 2 and 33/11KV Udipur substation feeders to confirm
our results. A flowchart of the proposed approach is illustrated
in Figure 1.

Figure 1: Overall System Methodology

4. Case Studies

4.1 RBTS Bus-2 Distribution system

The single line diagram of IEEE RBTS Bus-2 (33/11KV) main
feeder is as shown in Figure 2.

Figure 2: RBTS Bus-2 Distribution System

Table 1: Type, Number of Customers and average loads of
load points

Type of Customer Load (MVA) Number of Customers
Residential
Residential 1 0.535 210
Residential 2 0.535 210
Residential 3 0.535 200
Residential 4 0.535 200
Residential 5 0.535 200
Residential 6 0.535 200
Residential 7 0.45 200
Residential 8 0.45 200
Residential 9 0.45 200
Government and Institution (G & I)
G & I 1 0.566 1
G & I 2 0.566 1
G & I 3 0.566 1
G & I 4 0.566 1
G & I 5 0.566 1
G & I 6 0.566 1
Commercial
Commercial 1 0.454 10
Commercial 2 0.454 10
Commercial 3 0.454 10
Commercial 4 0.454 10
Commercial 5 0.454 10
Industrial
Industrial 1 1.13 1
Industrial 2 1.3 1
Total 12.656 1878
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This diagram consists of four numbers of sub feeders and all
combined have 22 load points, 14 main points, 22
transformers of 2 MVA, 11/0.4KV distribution transformers,
circuit breakers and cables. The system has a total of 1878
customers connected to it, with an average load of 12.656 MVA
are detailed in Table 1. These customers belong to various
categories, including Residential, Governmental and
Institutional, Commercial, and Industrial, and they are
distributed across different feeders within the system.
Reliability information for critical components like Power
Transformers, Breakers, Cables, Distribution Transformers,
and Busbars, including failure rates, repair times, and
switching times, is detailed in Table 2 . Additionally, Table 3
provides the lengths of cable sections utilized within the
system.

Table 2: Reliability data of each component

Components
Failure
Rate
(F/Year)

Repair
Time
(Hour)

Switching
Time
(Hour)

Transformers
33/11KV, 16MVA 0.015 15 1
11/0.4KV (LT) 0.015 10 1
Breakers
33.0 KV 0.002 4 1
11.0 KV 0.006 4 1
Busbars
33.0 KV 0.001 2 1
11.0 KV 0.001 2 1
Feeders
11.0 KV 0.65 5 1

Table 3: Feeder Section

S. N Length in KM Feeder section

1 0.8
C8, C11, C16, C17, C19, C21, C22,
C23, C26, C28, C33, C34, C36

2 0.75
C1, C2, C3, C5, C7, C10, C12,
C13, C20, C25, C27, C30, C35

3 0.6
C4, C6, C14, C15, C18, C24,
C29, C31, C32

4.2 33/11KV Udipur Substation feeders

The single line diagram of 33/11KV Udipur Substation feeders
is as shown in Figure 3. This diagram consists of four numbers
of sub feeders and all combined have 57 load points, 36 main
points, 57 numbers of different ratings lumped transformers
of 11/0.4KV distribution transformers, circuit breakers and
fuses. 4 presents the tripping frequency, repair time, and
operational hours for four feeders, along with the calculated
failure rate and Mean Time to Repair (MTTR). These metrics
provide insights into the reliability and maintenance
efficiency of the feeders. Meanwhile, Table 5 displays the
number of customers, average load, radial length, lateral
length, and total length for each feeder. These parameters are
crucial for assessing the network’s capacity, distribution, and
geographical coverage.

Figure 3: 33/11KV Udipur Distribution feeders.

Table 4: Feeder tripping frequency and Outage duration
(2079-07-01 to 2080-06-30)

S.N
Name
of Feeder

No of
tripping

Repair
time

Operation
hour

Failure rate
(No of tripping
/Operation Hour)

Mean time
to Repair

1 Besishahar 57 38.966 8721.03 0.0065 0.68
2 Bhoteodar 69 52.183 8707.82 0.0079 0.76
3 Okhari 88 98.55 8661.45 0.0102 1.12
4 Nayagaun 100 146.633 8613.37 0.0116 1.47

Table 5: Feeder’s length and Number of Customers

S.N
Name of
Feeder

Number of
Customers

Average
Load

(MVA)

Radial
Length
(KM)

Lateral
Length
(KM)

Total
Length
(KM)

1 Besishahar 14131 1.590 24 22.5 47
2 Bhoteodar 9041 1.000 36 13.5 50
3 Okhari 5324 0.377 28.5 32.5 61
4 Nayagaun 7958 0.445 41 43.5 85
Total 36454 3.412 129.5 112 241.5

5. Results and Discussion

5.1 RBTS bus-2 distribution system

5.1.1 Reliability analysis with no DG Connected

A reliability analysis was conducted in ETAP 19.0.1 for RBTS
bus-2, focusing on modeling without Distributed Generation
(DG) connectivity. The analysis incorporated the provided
failure rates and Mean Time To Repair (MTTR) data for the
equipment, as well as the number of customers and average
load. The results of this analysis are summarized in Table 6.
This modeling approach allows for an evaluation of the
reliability and performance of RBTS bus-2 under normal
operating conditions without the influence of DG systems.

Table 6: Reliability Indices without DG

S. N System Indices Results
1 SAIFI (f/ Customer. Year) 1.9772
2 SAIDI (hr./ Customer. Year) 7.9509
3 EENS (MWh/ Year) 114.089
4 CAIDI (Hr./ Cust interruption) 4.021
5 ASAI (pu) 0.9991
6 ASUI (pu) 0.00091
7 AENS (MWhr/ Customer. Year) 0.0608
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5.1.2 Injecting DG at different locations to find the optimal
location

To determine the optimal location for injecting Distributed
Generation (DG), a wind turbine with a capacity of 1 MW is
utilized. This wind turbine, modeled as a Type-III DG source
in generic mode within ETAP, has a failure rate of 0.03 failures
per year and a repair time of 50 hours. It can inject both real
and reactive power into the system. The process involves a hit
and trial method, where the wind turbine is injected at various
main points to identify the most suitable location. Table 7
presents the values for reliability indices such as SAIFI, SAIDI,
and EENS. According to the results in Table 7, the optimal
location for injecting the DG is determined to be point A,
specifically Main Point 14 (MP14) having minimum values of
SAIFI, SAIDI, and EENS. In Figure 4, SAIFI values at various
locations are depicted with DG connections, illustrating that
the minimum SAIFI values occur at location A.

Table 7: SAIFI, SAIDI and EENS values with DG at different
locations

DG
injection

points

SAIFI
(failure/Customer.year)

SAIDI
(hr/Customer.year)

EENS
(MWhr/year)

A 1.5870 7.0251 97.619
B 1.7134 7.6499 110.575
C 1.5962 7.0692 98.991
D 1.6031 7.1022 104.103
E 1.7214 7.6810 107.470
F 1.6429 7.3025 99.455
G 1.6456 7.316 100.596

Figure 4: SAIFI values at different locations.

Figure 5: SAIFI Values with DG at different locations

Figure 6: Regression Analysis for testing of ANN model

Figure 7: Regression analysis for testing of ANN model

5.1.3 ANN to find the optimal location of DG

By implementing Distributed Generation (DG) at different
distances ranging from 20% to 100% for 14 main points along
their respective feeders, we acquired 70 numbers of
corresponding data for SAIFI, SAIDI and EENS from ETAP
simulation outputs for training purpose. Levenberg-
Marquardt algorithm is adopted for training the network. This
algorithm takes less time as training process automatically
stops when generalizations stop improving as indicated by
increase in Mean Square Error of validation samples. Out of
total training datasets, 70% have been used for training
purpose, 15% for validation and remaining 15% for testing
purpose. Lower value of MSE signifies that average squared
difference between targets and outputs are lower which is
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preferred. Regression value close to unity is preferred which
signifies there is close relationship between target and output.
Number of hidden layers are taken so as to have better
convergence, lower value of MSE and Regression value close
to unity. Training set best locations have been validated in
ETAP software to identify optimal location for DG integration
so as to have minimum values of SAIFI, SAIDI, EENS. Outputs
for optimal locations from training on MATLAB R2021a can be
denoted as Location 1, Location 2 and Location 3 are near
Main points 7, 8 and 14 at a distance of 0.48 KM, 1.51 KM and
2.62 KM from their feeders respectively. These locations are
validated with analytic approach in ETAP as shown in Table 11.
Figure 7 shows the Regression analysis for testing of ANN
model which clearly shows the Regression value close to unity
means there is close relationship between target and output.

Table 8: Summary of SAIFI, SAIDI and EENS values at
validation locations

S. N Reliability Indices
Validation
Location 1

Validation
Location 2

Validation
Location 3

1 SAIFI (f/ Customer. Year) 1.7138 1.6033 1.587
2 SAIDI (hr./ Customer. Year) 7.6508 7.1024 7.0251
3 EENS (MWh/ Year) 110.596 104.105 97.62

5.2 33/11KV Udipur Substation Distribution System.

5.2.1 Reliability analysis with no DG Connected

The Udiipur distribution system is modeled in ETAP 19.0.1
using data sourced from the log sheet of the Lamjung
Distribution Centre operated by the Nepal Electricity
Authority (NEA). This data encompasses tripping frequency,
interruption duration, average load, information on types of
customers, the number of customers connected to different
load points, and the sizes of transformers deployed within the
Lamjung Distribution Centre. Subsequent to conducting a
reliability assessment within ETAP, the resulting reliability
indices are compiled and displayed in Table 9.

Table 9: Reliability Indices without DG of Udipur Distribution
System

S.N System Indices Results
1 SAIFI (f/ Customer. Year) 1.4957
2 SAIDI (hr/ Customer. Year) 5.2901
3 EENS (MWh/ Year) 15.33
4 CAIDI (Hr/ Cust interruption) 3.537
5 ASAI (pu) 0.9994
6 ASUI (pu) 0.0006
7 AENS (MWhr/ Customer.Year) 0.0004

Table 10: Reliability Indices with DG at different locations

DG
injection points

SAIFI
(failure/Customer. Year)

SAIDI
(hr./Customer. Year)

EENS
(MWhr/Year)

A 0.8403 3.8505 11.066
C 0.8017 3.8243 10.949
E 0.7786 3.8085 10.892
O 0.8041 3.8698 11.129
R 0.8449 3.9347 11.427

Z1 0.7892 3.8726 11.318
a 0.8435 3.9066 11.399
j 0.8435 3.9097 11.405

5.2.2 Injecting DG at different locations to find the optimal
location.

To determine the optimal location for injecting Distributed
Generation (DG), a wind turbine with a capacity of 0.5 MW is
utilized. This wind turbine, modeled as a Type-III DG source
in generic mode within ETAP, has a failure rate of 0.03 failures
per year and a repair time of 50 hours. It can inject both real
and reactive power into the system. The process involves a hit
and trial method, where the wind turbine is injected at various
main points to identify the most suitable location. Table 10
presents the values for reliability indices such as SAIFI, SAIDI,
and EENS. According to the results in Table 10, the optimal
location for injecting the DG is determined to be point E,
specifically Main Point 5 (MP5) having minimum values of
SAIFI, SAIDI, and EENS. The SAIFI values at different locations
after injecting DG has been shown in the graph in Figure 5.

5.2.3 ANN to find the optimal location of DG

By implementing Distributed Generation (DG) at different
distances ranging from 25% to 100% for 36 main points along
their respective feeders, we acquired corresponding data for
SAIFI, SAIDI and EENS from ETAP simulation outputs. It’s
worth noting that the number of customers and average load
were kept constant, while adjustments were made to the
distances of the main points from the feeders, ensuring a
constant total radial length for each feeder. Outputs for
optimal locations from training on MATLAB R2021a can be
denoted as Location 1, Location 2 and Location 3 are near
Main points 4, 5 and 13 at a distance of 21.84 KM, 29.61 KM
and 25.48 KM from their feeders respectively. Number of
hidden layers have been selected so as to have minimum
value of MSE and Regression value close to unity. Figure 6
shows the Regression diagram for training , validation and
testing process which clearly shows regression value close to
unity showing closer relationship between target and output.
DG has been placed on ETAP simulation at validation
locations to validate the results so as to obtain values for SAIFI,
SAIDI and EENS. Table clearly shows that minimum values of
SAIFI, SAIDI and EENS is obtaine at validation location 2.

Table 11: Summary of SAIFI, SAIDI and EENS at Validation
Locations

S. N Reliability Indices
Validation
Location 1

Validation
Location 2

Validation
Location 3

1 SAIFI (f/ Customer. Year) 0.7976 0.7829 0.8043
2 SAIDI (hr./ Customer. Year) 3.8227 3.8133 3.8703
3 EENS (MWh/ Year) 10.929 10.907 11.131

6. Conclusion

In RBTS Bus-2 Distribution System, there was reduction in
values of SAIFI, SAIDI and EENS by 20%, 12% and 15%
respectively. In 33/11KV Udipur Substation feeders, there was
reduction in values of SAIFI, SAIDI and EENS by 48%,28% and
29% respectively. Implementing ANN can reduce the errors
caused by human hit and trial methods and also lead to
reductions in computational complexities and processing
time. Distributed Generation can significantly improve
distribution system reliability on long rural distribution
network if it will be installed at proper location.
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