
Proceedings of 15th IOE Graduate Conference
Peer Reviewed

Year: 2024 Month: May Volume: 15
ISSN: 2350-8914 (Online), 2350-8906 (Print)

Mode-Based Real Time Music Generation Using LSTM and GAN

Prabin Bohara a, Prabin Sharma Poudel b, Raj Kumar Dhakal c,
Sajjan Acharya d, Shikhar Bhattarai e

a, b, c, d, e Thapathali Campus, IOE, Tribhuvan University, Nepal
 a prabinbohara10@gmail.com, b prabinsharmapoudel@gmail.com, c rajdhakal.404@gmail.com,
d sajjanacharya11@gmail.com, e shikhar28@tcioe.edu.np

Abstract
Composing music in a specific mode presents a daunting challenge due to the vast number of potential pitch and chord permutations,
making it a tedious and time-consuming process. In this paper, we propose an advanced music generation system that addresses
this issue by leveraging mode classification and separate training for accurate sequence prediction, ensuring compliance with music
theory principles. Mode classification is achieved using the Hamming distance, a robust dissimilarity metric that enables precise
identification of the underlying mode within a given dataset. By employing the concept of generative network whose core has been
powered by Long Short-Term Memory (LSTM) models, we generate sequences of new pitch combinations and chord progressions.
Incorporating a discriminative network in the system enhances the authenticity and quality of the generated compositions. The
successful development of this system represents a significant contribution to the field of music generation, with the potential for
further enhancements through the incorporation of advanced music theory concepts and rigorous validation techniques.

Keywords
Discriminator, Generator, Hamming distance, LSTM, MIDI, Modes, Pitch

1. Introduction

Understanding the properties of music is essential for a
comprehensive comprehension of this intricate art form. This
paper provides a concise overview of key music properties,
covering notes, octaves, scales, chords, tempo, time signatures,
intervals, tonic, dominant, sub-dominant, and shifts in notes.

Notes are the fundamental building blocks of music,
representing specific pitches and durations. Octaves divide
the musical range into distinct sections, with each octave
comprising a set of twelve notes. Scales, on the other hand,
establish tonal frameworks and create unique musical
atmospheres by organizing notes in specific patterns. An
interval is the pitch difference between two notes; Tonic,
Dominant, and Sub-dominant specify the context of the
interval. Meanwhile, Tempo and time signatures capture the
rhythmic aspects of music. By delving into these musical
properties, one can unravel the intricacies of composition and
performance.

In the realm of music, modes encompass the ordering and
arrangement of musical notes, shaping the tonality and
creating distinct musical atmospheres. While the terms
“mode" and “scale" are sometimes used interchangeably, they
carry different meanings. A scale represents a sequence of
notes organized in ascending or descending order, whereas a
mode signifies a specific way of employing a scale within a
musical context. Modes go beyond mere scales in terms of
application, embodying a unique approach to utilizing notes
to evoke a particular musical mood.

Modes, often referred to as “tenors," serve as tonal centers
around which melodies revolve. They have been utilized for
centuries in music composition, with the Major and Minor
modes being the most prevalent. Modes are powerful tools for

conveying diverse emotional landscapes. For example, the
Major mode imparts a sense of brightness and cheerfulness,
while the Minor mode evokes a mood of melancholy and
introspection. Descriptions of musical tonality frequently
involve referencing the key and its corresponding mode. For
instance, if a piece is described as “E Aeolian," it signifies that
the composition is in the key of ‘E’ as its root note or home,
and the tonality of the piece is characterized as sombre and
brooding.

There exist seven fundamental modes in music, each of which
relates to the Major scale. These modes exhibit specific
alterations to notes, introducing flattened or sharpened tones
in comparison to the Major scale. The following modes
exemplify this:

1. Ionian mode: 1, 2, 3, 4, 5, 6, 7
2. Lydian mode: 1, 2, 3, 4#, 5, 6, 7
3. Mixolydian mode: 1, 2, 3, 4, 5, 6, b7
4. Dorian mode: 1, 2, b3, 4, 5, 6, b7
5. Aeolian mode: 1, 2, b3, 4, 5, b6, b7
6. Phrygian mode: 1, b2, b3, 4, 5, b6, b7
7. Locrian mode: 1, b2, b3, 4, b5, b6, b7

Various other modes can exist, and they can differ from one
part of the world to another. For instance, Eastern music can
have different modes such as Bhairav, Marva, and Todi. Each
mode incorporates distinctive alterations to certain notes,
leading to the creation of unique tonal qualities and
emotional characteristics. By understanding and harnessing
the power of modes, composers can craft music that resonates
with specific moods and atmospheres, allowing for rich and
evocative musical expressions.

Mode-based music composition requires one to figure out a

Pages: 24 – 31

Proceedings of 15th IOE Graduate Conference

way to classify the collected datasets into established modes,
either by an algorithm of some kind or through an extensive
training. The former method, with the aid of music theory,
turns out to be more effective than the latter. Thus, the
authors have employed an effective algorithm for mode
classification, whose correctness is verified by the authors. In
the subsequent phase of music generation a Deep Learning
pipeline is employed.

2. Related Works

The authors of the paper by Google Research titled “Multi-
instrument Music Synthesis with Spectrogram Diffusion" [1]
employs a two-stage process, converting MIDI to spectrograms
using an encoder-decoder transformer and then generating
audio from the spectrograms using a convolution spectrogram
inversion network in real-time.

An application is introduced in “An interactive music infilling
interface for pop music composition," [2] to facilitate pop
music composition with user control utilizing melody, bass,
and harmony tracks.

The use of genetic algorithms for jazz melody generation is
explored in “GenJam: A Genetic Algorithm for Generating Jazz
Solos." [3] that employs genetic operators like crossover and
mutation to create new melodies based on existing ones.
Fitness evaluation and selection of superior individuals for
breeding the next generation contribute to satisfactory results
in generating improvised jazz solos. However, challenges
related to mapping chords and scale-to-chord progressions
are acknowledged.

The paper “Melody Transcription Via Generative Pre-Training"
[4] addresses the conversion of music audio into digital
information focusing on musical elements. The system
automatically transcribes music recordings into
non-overlapping note sequences using music information
retrieval techniques. The paper “An Emotional Symbolic
Music Generation System Based on LSTM Network" [5]
presents a biaxial LSTM network for generating polyphonic
music based on human emotions categorized using Russell’s
Valence-Arousal emotional space and generates music to
match desired emotions.

The authors of “Generating Music with a Self-Correcting
Non-Chronological Autoregressive Model" [6] investigate the
use of image-based and frequency-based techniques for
music generation allowing user control over note-level edits,
including correcting off-beat notes. As they utilized U-Net
Architecture, our system also takes into consideration the
feedback from the users.

"Differential Music: Automated Music Generation Using
LSTM Networks with Representation Based on Melodic and
Harmonic Intervals" [7] focuses on generating music based on
melodic movement and overall musical structure rather than
specific pitch or frequencies. The encoding utilizes a one-hot
technique with equal-time quantization slices. LSTM
networks are employed for training while addressing the
challenge of repetitive patterns in generated music.

To mitigate the issue of repetitive patterns in music generated
by RNNs, the authors of the paper “Sequence Tutor:

Conservative Fine-Tuning of Sequence Generation Models
with KL-control" [8] introduce the use of Reinforcement
Learning (RL). The use of Fine-tuning RNN with RL was done
to adhere to music theory rules. This invites intensive training
to address music theories which can be computationally
expensive.

The preceding studies showcase sophisticated architectures
for melody generation; however, they lack quantifiable
assessments of the generated music, relying mostly on
subjective evaluation. Furthermore, the produced music does
not adhere strictly to any particular scale, and the concept of
diverse rich modes is conspicuously absent. The deficiency in
mode-specific music generation underscore the need for the
authors to address the existing research gap.

3. Methodology

The overall approach to generating music in the presence of
various contexts is presented in this section. Entire stages from
the data preparation, mode classification to finally generating
sequence of relevant notes, chords and tempo are performed
accordingly.

3.1 System Architecture

The proposed system has an algorithm differentiating music
datasets into particular modes and their root notes
implementing concepts from music theory. The proposed
system’s workflow can be represented by the block diagram of
Figure 1.

Data Collection
MIDI format

Exploratory Data
Analysis

Saved
Model

User's Input

prediction

Best Output Model

Training Model/
Network

Model Definition

Load model

Dataset
Preparation

Model Training

Website (UI)

Notes, Chords and
Duration extraction

Mode Classification

Music DB

Train-Test Split

Feature Extraction

Tokenization and
Encoding

Authentication

Figure 1: Block Diagram of System Architecture

3.2 Mode Classification

To determine the mode of any given song we used the
Mode-Classification pipeline based on a comparison of the
notes of the song to the notes in any given mode. The pipeline

25

Mode-Based Real Time Music Generation Using LSTM and GAN

employs a series of steps such as key and scale analysis, note
transposition, counting of notes, and Hamming distance
calculation. The MIDI files store numeric values for each note
of music and then store them in binary form. Music21 library
is used to recognize the notes based on their MIDI numbers
and extract them. Each note map to the natural frequency of
sound. Since the midi files assign unique numbers to each of
the notes, it’s necessary to do the conversion. The conversion
of the natural frequency into MIDI number is done with the
following formula:

MIDI number = 12× log2

(
frequency

440

)
+69 (1)

For obtaining the pitch class from the MIDI number, modulo
12 was applied to the MIDI number. The corresponding output
was the respective pitch class which helped in determining the
root note of a MIDI song.

Start

MIDI notes enumeration for Known
Standard Modes

Input Filepath for Dataset

Key and Scale AnayzerCalculate Key / rootnote of a song

Transpose Key to reference key of
'C'

Transposed = [x-rootnote
for x in a]

Transpose Octave to reference
Octave of '-1'

RefOctave = [x%12 for x
in Transposed]

Extraction of Notes

Sort Note frequencies in Descending
order based on count

Select Most-Used 7 Notes

Sort Most-Used Notes in Ascending
Order of MIDI numbers

Compute Hamming Distance
between Standard Mode and Most-

Used Notes d(u,v) =
#{i : uᵢ ≠ vᵢ, i = 1,2,...n}

where,
u = Most-used notes
v = Notes of standard

mode

Get Mode-Name with Lowest
Distance

Input Filepath for Dataset

Stop

Figure 2: Flowchart for Classification of Modes

Previously, a mode list was created that contains the names of
different modes and their corresponding set of notes. This
generated list was used for comparison with the notes
extracted from the audio file.

3.3 Tokenization and Encoding

Each musical file needs conversion into a proper format that
represents each building block of any musical piece which
was done in the tokenization process. The extracted note was
converted into the string form which defined the individual
token. In the case of a chord, each note within the piece was
dealt with individually to convert into the string and tokenize
respectively. Moreover, the addition of the “〈SOC〉” and
“〈EOC〉” tokens were done at the start and the end in order to
wrap the notes present in a chord. In the case of tempo, each
tempo obtained was rounded off to get the fixed set of tokens
defined by token representation.

The token representation of music was converted into label
encoding which was mapped to its corresponding label
(number) from the mapping dictionary. Generation of the
mapping dictionary was done by appending all the notes in 9
(0 to 8) octaves. The example elements of the dictionary were
‘C0’: 1, ‘C#’: 2, and so on. Adding on, a similar case was
repeated with the encoding of tempo as well. For instance, the
example elements of the dictionary were ‘30’: 1, ‘50’:2, and so
on. By knowing the key as a token from the tokenized
sequence, we mapped to the corresponding value of
dictionary, which in turn provides the encoded sequence.
Thus, the encoded sequence after splitting into train and test
sets, was suitable to feed into our actual model.

3.4 Generative Network

The core of the generative block [9] is based on two different
pipelines used to process “Notes and Chords” and “Tempo”
separately. The model architecture consisted of two
embedding layers, five LSTM layers, and four fully connected
layers. It was trained on a dataset of MIDI files to generate
music.

Notes

Chords

Notes

Discriminator

Tempo

Right Shift with target
label

LSTM ...

LSTM LSTM...

LSTM

+

Generator

+

Figure 3: GAN based Model Architecture

The input to the model was a sequence of label-encoded
vectors representing musical notes and tempo. Two
embedding layers were used to transform the input sequences
into fixed-length vector representations. The first layer

26

Proceedings of 15th IOE Graduate Conference

handled notes and chords, while the second layer processed
tempo information. The input shape was (None, timesteps),
where ’None" represented the batch size and “timesteps" was
set to 60. The output shape of each embedding layer was
(None, timesteps, 100), with 100 representing the embedding
dimension per token.

The output of the first embedding layer passed through three
LSTM layers with 512 hidden units each. The output of the
second embedding layer went through two LSTM layers, also
with 512 hidden units but with 512 timesteps. The LSTM layers
learned temporal dependencies and captured the long-term
structure of the music.

The output of the final LSTM layer for note and duration
generation was flattened and passed through two fully
connected layers with 256 and 110 neurons, respectively.
These layers mapped the LSTM features to a context vector of
dimension (256, 1). The last layer used a SoftMax activation
function to produce a probability distribution over the 110
possible musical tokens. Similarly, the output of the LSTM
layer for tempo generation was flattened and passed through
two fully connected dense layers with 128 and 9 neurons,
respectively.

The second fully connected layer applied a linear
transformation followed by the SoftMax activation function.
The SoftMax function normalized the outputs to ensure a sum
up to one, representing a probability distribution. The
distribution covered 110 distinct tokens for note generation
and 9 tokens for tempo generation. Among the 110 tokens,
108 represented notes across 0 to 8 octaves, while the
remaining 2 tokens denoted “Start of Chord” and “End of
Chord” (“〈SOC〉” and “〈EOC〉”) respectively.

3.5 Discriminative Network

The discriminative block enabled to examine the quality of
generated music sequences from the above generative block.
Both the model generated and the original piece of music is
provided to the discriminator as an input parameter.

The newly generated token is combined with the given input
in the case of both Chords and Tempo. After clipping the first
indexed token which is done by right shifting the input, we got
the fixed-length generated sequence of music. Then the
separate entity of “Notes and Chords” and “Tempo” were
combined to achieve the single latent representation of
model-generated music.

In hindsight, the original input sequence is right-shifted along
with the label of the classification problem. Thus, the obtained
tokens are aggregated to act as a real musical sequence to the
discriminator.

Discriminator block in particular contains a sequence of
Embedding, LSTM, and Dense layers to facilitate the
recognition of real music from the model-generated one. The
loss function used to backpropagate the training of the neural
network is given by:

L(D) = max
[
log(D(x))+ log(1−D(G(z)))

]
(2)

4. Experiments

Here, we provide the details related to dataset collection,
implementation details, hyperparameters tuning and results
of our experiments.

4.1 Datasets

Numerous music datasets in the MIDI format were collected
from different sources on the Kaggle website. Among them,
only the datasets having piano as the main instrument was
selected. The piano songs varying from different artists such
as Bach to Beethoven, Chopin to Liszt were chosen. About
300 songs were collected that were classical pieces of music
from the different periodic eras by well-known musicians from
different websites like ‘freemidi’. Some modern songs were
available on different websites in a piano format which was
obtained for varied datasets. Likewise, a few midi files were
self-composed by our group in order to make our datasets
diverse, so as to include songs in even the rare modes. In total,
about 1800 MIDI songs were collected for the purpose of music
generation.

Implementing the algorithm for classification of modes of the
MIDI songs, the wide range of modes were achieved. The
diverse modes of the music can be represented by the Figure 4.

Figure 4: Graph for distribution of data based on Modes of the
songs

The majority of the songs taken in our dataset were found to
be in Ionian mode. The presence of songs of rare modes like
Eastern modes had a low number of songs belonging to them.
The representation of both the root notes for each mode is
shown in the Figure 5.

A A# B C C# D D# E F F# G G#
Root Note

Aeolian

Bhairav

Dorian

Harmonic_minor

Ionian

Locrian

Lydian

Marva

Melodic_minor_ascend

Mixolydian

Phrygian

Poorvi

Todi

M
od

e
Ty

pe

Songs by Root Note and Mode Type

Figure 5: Resulting scatterplot representing the frequency of
modes of songs and their root notes

27

Mode-Based Real Time Music Generation Using LSTM and GAN

4.2 Implementation Details

For the classification of datasets into modes, the file path was
received and the musical information was parsed using the
‘Music21’ python Library. Before that, the implementation of a
mode list was done where each of the numbers is enumerated.
The enumeration was done for seven fundamental modes.
Likewise, it was done for four Eastern Classical modes
(Bhairav, Poorvi, Marva, Todi) and two variations of the
fundamental seven modes (Harmonic minor, Melodic Minor).

After being parsed, the percussive aspects of the musical
information were discarded from the respective tracks and the
melodic elements such as notes and the chords along with
their duration were obtained. The Key or root note of the
music piece was obtained followed by the transposition of
keys and octaves.

For the transposition of the notes in the given key into the
reference of the key of C, each pitch was represented in
numerical form using the pitch number. Modulo 12 was
applied to transpose notes across octaves to the reference
octave of -1, corresponding to MIDI numbers ranging from 0
to 11. The frequencies along with their counts were then
sorted by implementing a sorting function based on frequency
count. Subsequently, the seven most frequently used notes
were extracted from the sorted list. The computation of the
Hamming distance between the most used notes and modes
was performed using the Scikit-learn library.

Say for a given particular piece of music, the seven most used
notes in reference to the key of C were [C, D, D#, F, G, G#, A#].
Since these notes were enumerated, starting from 0, the most
used notes list was actually represented as: Mostused_notes =
[0, 2, 3, 5, 7, 8, 10]

Hamming distance between the Mostused_notes and each of
the seven modes was calculated and the following values were
obtained.

Table 1: Modes, Note Enumeration, and Hamming Distance

Mode Note Enumeration Hamming Distance

Ionian [0, 2, 4, 5, 7, 9, 11] 3
Dorian [0, 2, 3, 5, 7, 9, 10] 1
Phrygian [0, 1, 3, 5, 7, 8, 10] 1
Lydian [0, 2, 4, 6, 7, 9, 11] 4
Mixolydian [0, 2, 4, 5, 7, 9, 10] 2
Aeolian [0, 2, 3, 5, 7, 8, 10] 0
Harmonic minor [0, 2, 3, 5, 7, 8, 11] 1
Melodic minor ascend [0, 2, 3, 5, 7, 9, 11] 2
Locrian [0, 1, 3, 5, 6, 8, 10] 2
Bhairav [0, 1, 4, 5, 7, 8, 11] 3
Poorvi [0, 1, 4, 6, 7, 8, 11] 1
Marva [0, 1, 4, 6, 7, 9, 11] 5
Todi [0, 2, 3, 6, 7, 8, 11] 2

Thus, the lowest distance is between ‘Mostused_notes’ and
Aeolian, which is 0. So, it can be concluded that the song
selected has the most similarity with the Aeolian mode. This
concludes that the given piece of music is under the Aeolian
mode.

The model was trained on a dataset of MIDI files containing
classical piano music. Categorical cross-entropy was used as

the loss function and Adam optimizer was used to optimize the
parameters. The training process involved iteratively feeding
the input sequences into the model and adjusting the weights
of the different layers to minimize the loss function. The batch
size of 128 was used to feed the training data in batches to
the model. The number of epochs was set to 50, which meant
that the model went through the entire dataset 50 times during
training.

Dropout layers with a rate of 0.3 were added after each LSTM
layer during training to prevent overfitting. However, during
music generation inference, dropout was not used to ensure
the generation of the most likely sequence of notes given the
input seed. The loss and accuracy during training were
monitored using a validation set. The training process
stopped when the validation accuracy stopped improving to
prevent overfitting.

4.3 Hyperparameters

Tuning the hyperparameters plays an important role in
determining the quality and diversity of the generated music.
The choice of hyperparameters can have a significant impact
on the model’s ability to capture the complex patterns and
structure of music. The following hyperparameters were used
for training purposes to control the overall behavior of the
model.

4.3.1 Learning rate

The learning rate determines the step size at which the
optimizer updates the model parameters during training. A
smaller learning rate can lead to slower convergence, while a
larger learning rate can cause the model to overshoot the
optimal solution. In the case of music generation, a learning
rate of 0.001 was found to be optimal.

4.3.2 Batch size

The batch size determines the number of training examples
used in each iteration of the training process. A larger batch
size can lead to faster convergence, but can also require more
memory and processing power. In the case of music
generation, a batch size of 128 was used.

4.3.3 Number of epochs

The number of epochs determines the number of times the
model is trained on the entire dataset. A larger number of
epochs can lead to better performance, but can also increase
the risk of overfitting. In the case of music generation, a total
of 50 epochs were used.

4.3.4 Dropout rate

The dropout rate determines the probability of dropping out a
neuron during training. Dropout is a regularization technique
that can help prevent overfitting by randomly dropping out
some of the neurons in the model. In the case of music
generation using LSTM, a dropout rate of 0.3 was used after
each LSTM layer.

28

Proceedings of 15th IOE Graduate Conference

4.4 Results

4.4.1 Loss Curve

For different modes, different models were trained with the
songs matching the modes. As there was low number of
changes in the tempo, only the sequence of notes and chords
were considered for appropriate calculation of loss and
accuracy.

Figure 6: Loss Curve for Harmonic Minor and Dorian Mode

The curves in Figure 6 illustrate the loss of training and
validation data for only the notes and chords with respect to
different modes over the number of epochs. The difference in
the predicted and actual output of the models during the
training phase can be visualized from the above diagrams. The
sparse categorical cross entropy losses calculated for each
training example are summed up to get the final loss of the
epoch that is plotted in the graph.

By looking at the curves of Figure 6, we can infer that the loss
has gradually decreased over the number of epochs moving
from left towards right (0 to n epoch). However, the loss was
stabilized after around 32 epochs in the case of the second
graph. Also, the loss for the training data of both Phrygian and
Aeolian is slightly lower compared to validation data which
is good enough to make our models in a low variance state.
Moreover, we can also conclude that the models have a low
bias for its loss lying in the range of 0 to 1.

4.4.2 Accuracy Curve

The accuracy curves in Figure 7 depict the performance of our
overall machine learning model over the various musical
modes. The individual accuracies calculated over the training
examples are added to return the actual accuracy for the given
epoch. The accuracy was seen to be increasing exponentially
with the increment of epoch till the saturation level (n epoch).
Since the gap training and validation accuracy is fairly
narrower, it can be concluded that our models are in a low
variance state. It is regarded that a music generation system
can predict consecutive notes with less error provided the
accuracy is high.

Figure 7: Accuracy Curve for Harmonic Minor and Dorian
Mode

Thus, from the loss and accuracy curves, it can be inferred that
our machine learning models make fewer errors in minimal
input when interfaced with numerous input samples.

4.4.3 Confusion Matrix

The confusion matrix in Figure 8 is created for the Ionian
mode to visualize the predicted notes by the model given the
actual notes from the validation dataset. It enables the model
to assess its performance without confusion in choosing from
the range of classes (notes). The numbers in the diagonal of
the matrix symbolize the count of True Positives (TP)
predicted in the Ionian mode. Also, the summation of the
non-diagonal elements gives the count of wrongly classified
notes by the model. To enhance clarity, the color intensity
over the confusion matrix depicts the count in each cell [i, j],
where i represents the row number and j represents the
column number. It is observed that the required intensity in
the diagonal, as in a typical confusion matrix, is missing.
However, the intensity over non-diagonal elements is quite
satisfactory compared to the standard confusion matrix.

Figure 8: Confusion Matrix for Ionian Mode

29

Mode-Based Real Time Music Generation Using LSTM and GAN

Since Ionian had the largest number of songs in our dataset,
Ionian mode was chosen for computing F1 scores. Similar
scores could be achieved for each mode consequently. For
further evaluation, an online survey was conducted by allowing
others to rate the music pieces produced by our model for each
mode.

Table 2: Classification Metrics

Metric Precision Recall F1-score Support

Macro average 0.500262 0.516335 0.490216 500
Weighted average 0.759995 0.758 0.74893 500

Accuracy : 0.758

4.4.4 Crowd Evaluation

Figure 9: Graph to show the rating of songs in an average of
all modes

The graph in Figure 9 demonstrates the average rating for all
modes of the demo songs averaged in total. About 19 percent
of the surveyed individuals rated the songs 7 on average. About
2 percent of the individuals rated ‘1’ for the songs produced by
our model. A range of ratings can be seen from the feedback
from the audience, but it can be considered positive feedback
from the overall perspective.

The individuals who participated were also asked about their
experience in the field of music. Different individuals with
varying experiences were part of the survey. The graph of
Figure 10 demonstrates that those with less or higher
experience along with the ones having no clue took part in the
survey as the audience.

Figure 10: Graph of Music Experience of the Audience
involved in the survey

5. Conclusion

The design of an autonomous music composition system is a
challenging task in itself. Knowing which set of notes to play
with new patterns can be computationally expensive. Thus,
music generation with the concept of the composition of new
melodies is a creative task. Due to the lack of modal datasets,
there is a need to create our own dataset. The modal dataset is
to be created by applying the mode-classification algorithm to
the collected dataset. The newly created dataset is then used
for the training of the songs together that have similar modes.

Thus, the system developed in this project successfully and
accurately classifies the modes of the dataset. The choice of
selecting mode, root-note, tempo, and time signature is
provided to the user. When the user selects one’s desired
choice, the trained model successfully predicts new
notes/chords based on the input provided. The time taken by
our system to generate music varies depending on the
complexity of the composition and the computational
resources available, which is usually a couple of seconds.

To summarize, the feedback from the surveyed individuals
yielded a satisfying and positive response. The respondents
provided ratings for the music anonymously, with nearly 8%
identifying themselves as professionals in the field of music.
Their assessments served as the subjective measurement of
the produced music. Moving forward, the inclusion of the
additional musical elements with a better model for the neural
network architecture would further enhance this project in the
future.

References

[1] Curtis Hawthorne, Ian Simon, Adam Robert, Neil
Zeghidour, Jordan Gardner, Ethan Manilow, and Jesse
Engel. Multi-instrument music synthesis with spectrogram
diffusion. In International Society For Music Information
Retrieval Conference, 2022.

[2] Rui Guo. An interactive music infilling interface for pop
music composition. ArXiv, abs/2203.12736, 2022.

[3] John D Biles. Genjam: A genetic algorithm for generating
jazz solos. In International Conference on Mathematics
and Computing, Kaohsung, Taiwan, 1994.

[4] Chris Donahue, John Thickstun, and Percy Liang. Melody
transcription via generative pre-training. In International
Society For Music Information Retrieval Conference,
Bengaluru, 2022.

[5] Kun Zhao, Siyuan Li, Chen Junanjuan, Hui Wang, and
Jun Wang. An emotional symbolic music generation
system based on lstm network. In 2019 IEEE 3rd
Information Technology, Networking, Electronic and
Automation Control Conference (ITNEC), pages 2039–2043,
March 2019.

[6] Wei Chi, Prashant Kumar, Sudeep Yaddanapudi, Ram
Suresh, and Umut Isik. Generating music with a self-
correcting non-chronological autoregressive model. ArXiv,
abs/2008.08927, 2020. 18 August 2020.

[7] Hesam Rafraf. Differential music: Automated music
generation using lstm networks with representation based
on melodic and harmonic intervals. ArXiv, abs/2108.10449,
2021.

30

Proceedings of 15th IOE Graduate Conference

[8] Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau,
Jose Miguel Hernandez-Lobato, Ryan E Turner, and
Douglas Eck. Sequence tutor: Conservative fine-tuning
of sequence generation models with kl-control. In
International Conference on Machine Learning, New York,

2016.

[9] Ian J. Goodfellow et al. Generative adversarial nets.
Communications of the ACM, 63(11):139–144, 2020.

31

	Introduction
	Related Works
	Methodology
	System Architecture
	Mode Classification
	Tokenization and Encoding
	Generative Network
	Discriminative Network

	Experiments
	Datasets
	Implementation Details
	Hyperparameters
	Learning rate
	Batch size
	Number of epochs
	Dropout rate

	Results
	Loss Curve
	Accuracy Curve
	Confusion Matrix
	Crowd Evaluation

	Conclusion
	References

