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Abstract
In the field of medicine, Deep Convolutional Neural Networks (DCNNs) have made significant strides, yet they face limitations
in capturing comprehensive structural information due to their restricted perception capabilities.To address this limitation, this
research proposes a novel approach that combines the strengths of VGG-16 for local detail extraction and Vision Transformer
(ViT) for handling global features within images. With a focus on improving the classification of radiograph images, particularly in
detecting Musculoskeletal Abnormalities, the study utilizes the MURA dataset consisting of 40,005 radiographic images. Through
the integration of VGG-16 and ViT models, the research aims to achieve a more comprehensive analysis of radiograph images by
capturing both local and global features effectively. The proposed methodology demonstrates promising results, with the hybrid
model achieving an overall accuracy of 82.88% on the test set, along with a sensitivity of 0.8824.
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1. Introduction

In recent years, the demand for medical imaging, including
Magnetic Resonance Imaging (MRI), Computed Tomography
(CT) scans, and X-rays, has surged dramatically. This surge in
demand has outpaced the capacity of radiologists, particularly
in low and middle-income countries. As a result, there is an
urgent need to address the growing demand and availability of
medical imaging for disease diagnosis [1].Manually
processing medical data is frequently a time-intensive task,
and the likelihood of misinterpretation errors cannot be
ignored. Research suggests that in radiology, daily error rates
and inconsistencies may exceed 3–5% [2].

Musculoskeletal disorders, which affect the bones, muscles,
and joints, are a major cause of disability worldwide. They’re
not just a problem for older people but can affect anyone at any
age. This puts a lot of pressure on radiologists, who often feel
overwhelmed by their workload. To help them out, researchers
are looking into using artificial intelligence (AI) to assist with
diagnosing these disorders, especially in places like primary
care clinics where there’s a high demand for radiology services.
AI can help analyze complex X-rays and other images to make
diagnoses more accurate. With better technology and more
data available, AI algorithms are getting better at this task,
sometimes even outperforming humans [3].

In recent times, there has been a surge in research dedicated
to identifying bone abnormalities. However, the majority of
these studies narrow their focus to a single type of anomaly,
which diminishes their applicability in real-world clinical
scenarios. This limitation is justified by several factors,
including the limited availability of public datasets, the
diverse shapes of bones, and the wide spectrum of
abnormality types. Consequently, crafting a dependable
Computer-Aided Diagnosis (CAD) [4] system for bone
abnormalities proves to be a formidable technical endeavor.

Recent advancements in deep learning have introduced more
efficient methods for handling complex radiographic
data.These innovations involve utilizing multiple hidden or
fully connected layers[5] in training models, thereby
enhancing their effectiveness. The Transformer is a new type
of network that relies only on attention mechanisms, without
using the usual recurrence and convolution methods. It
includes an encoder and a decoder connected through
attention.When tested on translation tasks, it showed better
quality, could be run more tasks at the same time, and took
less time to train compared to older models [6].

This study focuses on developing a hybrid deep learning
model (VGG16+ViT) to predict musculoskeletal abnormalities
using radiographic images.This innovative method showcases
the potential of integrating diverse deep learning
architectures, marking a significant step forward in addressing
challenges related to musculoskeletal disorder diagnosis from
radiographic images. A normal radiograph with no disease
and an abnormal radiograph with diseases is shown in Fig 1.

Figure 1: Normal vs Abnormal Radiographs
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2. Related Works

This section presents an overview of previous research
conducted by various scholars. Rajpurkar et al.[7] previously
utilized a 169-layer CNN for detecting upper extremity
abnormalities in musculoskeletal images. However, their
model yielded a relatively low accuracy of 38.9% when applied
to finger radiographs. Chada G. [8] subsequently enhanced
the results through deep transfer learning, while Verma M. et
al.[9] concentrated on lower extremities using a densely
connected CNN. Additionally, other researchers explored
architectures such as VGG-19 and ResNet [10], achieving an
accuracy of 82.13%, as well as utilizing Efficient-Net
ensembles[11].

Ensemble learning and transfer learning with preprocessing
were also employed, with a peak finger accuracy of 67.05%
[12]. Gurpreet Singh [13] employed ComDNet-512 model,
employing the Deflate compression technique and achieved
highest accuracy of 89.41% in state-of-art method but model
was trained with a limited dataset of around 4000. Badgeley et
al. [14] propose using of an ensemble model that combines
the outputs of a CNN with a classifier made with patient
healthcare variables and achieved comparable results with the
state-of-the-art.

El-Saadawy[15] utilized a two-stage approach combining
GNG Network and VGG model for bone X-ray classification
and abnormality detection, achieving the highest accuracy of
78.51%.Fang et al.[16] obtained an overall accuracy of 73.4%
with the proposed iterative fusion CNN (IFCNN) method for
classifying the MURA dataset. Pelka et al. achieved the highest
accuracy of 79.85% using the InceptionV3 model on the entire
MURA dataset [17]. Varma et al. achieved an AUC score of 0.88
in classifying the Lower Extremity Radiographs Dataset (LERA)
by employing an ImageNet and DenseNet161 model
pre-trained with MURA for the classification task[18].

Guan et al.[19] conducted studies indicating an average
precision (AP) value of 62.04% for fracture detection. This was
accomplished through the utilization of a deep CNN model,
which involved marking fractures on arm X-ray images from
the MURA dataset by physicians. In another study by Harini et
al. [20], classification experiments were performed on finger,
wrist, and shoulder images within the MURA dataset using
five different CNN-based deep learning methods, resulting in
a maximum accuracy of 56.30%.

3. Methodology

3.1 Dataset Preparation

3.1.1 Dataset

The dataset comprises more than 40,000 X-ray images
covering seven distinct body regions, including elbows,
fingers, forearms, hands, humerus, shoulders, and wrists. It
encompasses a diverse array of abnormalities and conditions,
such as fractures, dislocations, osteoarthritis, and various
musculoskeletal disorders. Each X-ray image in the MURA
dataset is labeled with binary annotations indicating whether
it exhibits normal or abnormal characteristics. These
annotations were meticulously performed by certified

radiologists to ensure the accuracy and consistency of the
dataset.

Figure 2: Distribution of dataset by categories in
train-validation set

3.1.2 Dataset Preprocessing

The dataset collected was quite large. The image labels,
including abnormal and normal from seven different classes,
were stored in a CSV file and then imported into a dataframe
using the pandas library. The file paths for each image were
extracted and included in the dataframe. All labels were
recognized, and one-hot encoding was applied. To ensure
consistency, the images underwent normalization using the
mean and standard deviation of the dataset. Following this,
the images were resized to a uniform size of 224x224 pixels to
best fit the data for classification.

Figure 3: Visualization of dataset after preprocessing

3.1.3 Training and validation set

A total of 36,808 images were divided into training and
validation sets using random shuffling. For the initial split, the
proportion was 70:30, resulting in 25,766 images allocated to
the training set and 11,042 images to the validation set. In the
subsequent split, the proportion changed to 80:20, leading to
29,447 images in the training set and 7,361 images in the
validation set.
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Table 1: Number of images by category for train-validation set

Class Normal Abnormal
XR_ELBOW 2925 2006
XR_FINGER 3138 1968

XR_FOREARM 1164 661
XR_HAND 4059 1484

XR_HUMERUS 673 599
XR_SHOULDER 4211 4168

XR_WRIST 5765 3987

Total 21935 14873

3.1.4 Test set

The performance of the model was assessed using a distinct
test dataset comprising 3197 images. These images had been
evaluated and certified by board-certified radiologists from
Stanford Hospital during clinical radiographic interpretation.

Table 2: Number of images by category for test set

Class Normal Abnormal
XR_ELBOW 235 230
XR_FINGER 214 247

XR_FOREARM 150 151
XR_HAND 271 189

XR_HUMERUS 148 140
XR_SHOULDER 285 278

XR_WRIST 364 295

Total 1667 1530

4. Model Architecture

4.1 Feature Extraction

4.1.1 VGG-16

VGG-16 is a convolutional neural network architecture
designed for image classification tasks. It was proposed by the
Visual Geometry Group (VGG) at the University of
Oxford[21].In proposed architecture, the VGG-16 model is
utilized as a feature extractor. It’s employed without its fully
connected layers, essentially as a pre-trained convolutional
feature extractor for images. Once loaded, its layers are locked
to retain the pre-trained weights and feature extraction
abilities obtained from ImageNet. The output from VGG-16,
after passing through its convolutional layers, is flattened to a
one-dimensional vector.

4.1.2 ViT

ViT is a type of neural network architecture designed for
computer vision tasks.The Vision Transformer model was
proposed by Alexey Dosovitskiy et al. in the paper titled "An
Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale," published in 2020[22]. In this model
setup, the Vision Transformer (ViT) serves as a
complementary feature extractor alongside VGG-16. Unlike
traditional convolutional networks, ViT captures global image
patterns through self-attention mechanisms. Once loaded,
ViT processes the input image, extracting high-level features
that represent global relationships within the image.

4.2 Feature Concatenation

After extracting features from both VGG-16 and ViT models,
they are merged together through concatenation. VGG-16
captures spatial features, while ViT focuses on global
relationships. By combining these features, the model obtains
a comprehensive representation containing both local and
global information. Subsequent layers in the model refine and
utilize these merged features for binary classification.

Figure 4: Block diagram of proposed model

4.3 Classification

A proposed model is constructed for binary classification by
integrating features from both a pre-trained VGG16 model and
a Vision Transformer (ViT) model. The input layer receives
images of 224x224 pixels with RGB color channels. The VGG16
processes these images through convolutional and pooling
layers, extracting hierarchical features. The Flatten layer
converts the output of VGG16 into a 1-dimensional tensor for
further processing. The ViT-B16, a Vision Transformer model,
employs self-attention mechanisms to capture global
information and relationships within the images.

The Concatenate layer combines the detailed features from
VGG16 with the global context captured by ViT-B16. Dense
layers further process these concatenated features, gradually
reducing their dimensionality to learn intricate patterns.
Finally, batch normalization stabilizes and accelerates training
by normalizing outputs, enhancing overall efficiency and
model performance.
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Figure 5: Model Architecture

5. Result and Discussion

5.1 Model training details

In the training process, we utilized pre-trained models, VGG16
and Vision Transformer (ViT), for feature extraction from
image data. The layers of the VGG16 model were frozen to
retain the valuable features learned from the ImageNet
dataset. Our custom model architecture involved
concatenating the output of the VGG16 and ViT models,
followed by fully connected layers with GeLU activation
functions and L2 regularization to mitigate overfitting. The
model was compiled using the Adam optimizer with a various
learning rate and binary cross-entropy as loss function.
Evaluation metrics such as accuracy, precision, sensitivity and
specificty were employed to assess the model’s performance.
During training, the model iterated over batches of data,
minimizing the defined loss function through
backpropagation. The validation dataset was used to monitor
the model’s generalization ability and prevent overfitting.

5.2 Results

The model’s performance was evaluated using a distinct test
dataset comprising 3197 images, all reviewed and validated
by board-certified radiologists from Stanford Hospital during
clinical radiographic interpretation. The following presents the
outcomes obtained from different model assessments.Table 3
illustrates the results obtained from training the model using

different hyperparameter configurations for ViT. The model’s
performance when trained with a batch size of 64, and utilizing
a learning rate set at 0.0001. This combination notably led to
the highest performance metrics for the pretrained ViT.

Table 3: Experiment Results on ViT using transfer learning

Model Accuracy Precision Sensitivity Specificity

ViT/B16 0.7648 0.7630 0.6457 0.8536

Table 4 depicts the outcomes derived from training the model
under various hyperparameter setups for VGG-16. Among
these, the model exhibited its best performance metrics when
trained with a batch size of 64 and a learning rate of 0.00001.

Table 4: Experiment Results on VGG-16 using transfer
learning

Model Accuracy Precision Sensitivity Specificity

VGG-16 0.7903 0.7825 0.6963 0.7864

Table 5 displays the results obtained from training the model
under different hyperparameter configurations for
VGG-16+ViT. The model achieved its highest performance
metrics when trained with a batch size of 64, a learning rate
set at 0.00001, and incorporating L2-Regularization with
λ= 0.0001.

Table 5: Experiment Results on proposed VGG-16+ViT model

Epochs Accuracy Precision Sensitivity Specificity

30 82.88% 0.78 0.88 0.78

The loss curve and accuracy curve graphs illustrate the
training process of a proposed model, showcasing
fluctuations in performance metrics.

Figure 6: Training/Validation Loss Curve
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Figure 7: Training/Validation Accuracy Curve

The confusion matrix provided below sheds light on the
model’s performance in classifying musculoskeletal
radiographs into normal and abnormal categories. Within the
test set comprising 3197 images, the model accurately
identified 1350 images as abnormal (True Positives),
demonstrating its capability in detecting abnormalities
effectively. However, there were 180 instances where abnormal
images were mistakenly classified as normal (False Negatives),
indicating areas of oversight. Conversely, the model correctly
identified 1300 images as normal (True Negatives),
highlighting its proficiency in recognizing radiographs
without abnormalities. Nonetheless, there were 367 images
falsely categorized as abnormal when they were normal (False
Positives), suggesting instances of misclassification.

Figure 8: Confusion matrix

Table 6: Comparative performance analysis of VGG-16+ViT
with state-of-art techniques

Model Accuracy Precision Sensitivity
DenseNet-169 75.70% 0.88 0.86
DenseNet-201 76.57% 0.84 0.69

ConvNet 82% 0.86 0.72
VGG-16+ViT 82.88% 0.78 0.88

6. Conclusion

In this study, experiments were conducted on the MURA
dataset to detect musculoskeletal abnormalities in upper
extremities. Unlike prior research, which predominantly
focused on binary classification within categories, the task
was approached as a binary classification problem
encompassing full dataset. This involved preprocessing the
dataset and converting it into binary labels, encompassing
images from all categories. The outcomes revealed promising
results for the proposed VGG-16+ViT model, achieving an
accuracy of 82.88%, precision of 0.7858, sensitivity of 0.8824,
and specificity of 0.7804. These findings highlight the
effectiveness of the approach in identifying musculoskeletal
abnormalities in upper extremities. Sensitivity emerges as a
crucial metric in medical image classification, reflecting the
model’s ability to accurately detect true
positives—abnormalities present in the images. With a
sensitivity of 0.8824, the model demonstrates strong
capabilities for abnormality detection, emphasizing its
importance in clinical diagnosis. It’s noteworthy that no
existing model has been trained on the complete dataset,
underscoring the novelty and significance of this research. By
prioritizing sensitivity, the study contributes to advancing
automated abnormality detection, with potential implications
for improving diagnostic accuracy and patient care in clinical
settings.

However, this research has several limitations that should be
acknowledged. Firstly, the performance of the model may be
influenced by factors such as image quality, patient
demographics, and variations in radiographic techniques,
which were not explicitly accounted for in this study. Secondly,
the interpretation of sensitivity and specificity values should
consider the prevalence of abnormalities in the dataset, as
they may be affected by class imbalances. Lastly, while the
proposed VGG-16+ViT model shows promising results, further
validation on independent datasets and clinical trials is
necessary to assess its real-world utility and potential
limitations in clinical practice.

Future work in this area could explore the integration of other
deep learning architectures or ensemble methods to further
enhance the model’s performance. Additionally, incorporating
domain-specific knowledge or expert annotations into the
training process may improve the model’s ability to detect
subtle abnormalities. Moreover, conducting external
validation studies on larger and more diverse datasets would
help validate the generalizability of the proposed approach
across different patient populations and imaging modalities.
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