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Abstract

In the preliminary design of geotextile-reinforced walls, the integration of data-driven machine learning models has ushered in a new
era of predictive accuracy and efficiency. This paper presents the development and evaluation of three distinct machine learning
models: Artificial Neural Network (ANN), Support Vector Machines (SVMs), and Gradient Boosting (GB), as tools to enhance the
design process. The methodology entails the selection of input data, coupled with the application of analytical methods to ascertain
the factor of safety against overturning for geotextile-reinforced walls. The study harnesses eight input parameters, each with a
range of values, and employs analytical techniques to derive the crucial factor of safety. Subsequently, these input-output pairs are
fed into the machine learning models, facilitating the training and testing phases. The results of model performance assessment
reveal that both ANN and GB models outshine SVMs in predicting the factor of safety. These findings underscore the potential of
machine learning in advancing the accuracy and efficacy of geotechnical design, offering a promising avenue for future engineering

applications.
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1. Introduction

Soils exhibit inherent weaknesses in tension and
comparatively higher strength in compression. To address this
discrepancy and enhance soil stability, mechanical
reinforcement is often employed, with various materials such
as metal strips, non-biodegradable fabrics, and geogrids being
commonly utilized. Among these options, geotextiles have
gained significant traction on a global scale. Geotextiles offer
multifaceted functionality, including drainage, filtration,
separation, and reinforcement, making them valuable assets
in foundation engineering and the construction of retaining
wall structures. In the context of retaining wall structures,
geotextiles are strategically positioned within the layers of
granular backfill soil. This positioning imparts tensile strength
to the structure, bolstering its overall stability and facilitating
the construction of taller walls. Geotextiles effectively serve as

a structural sandwich between the granular backfill soil layers.

Designing geotextile-reinforced walls necessitates a thorough
evaluation, focusing on both internal and external stability
criteria.[1] Traditionally, verifying this stability involves
complex and time-consuming analytical methods, especially
when conducting parametric studies. In our research, we aim
to revolutionize this approach by leveraging a data-driven
methodology to determine the Factor of Safety (FOS) against
overturning. = The data-driven approach has garnered
attention from researchers [2, 3, 4, 5], worldwide for its ability
to predict geotechnical reliability and establish correlations
among linear and nonlinear parameters efficiently. While
linear and nonlinear analyses typically require extensive time
and effort, artificial intelligence and machine learning models
provide a streamlined solution.[5] These models allow for the

creation of correlation models, enabling rapid parametric
variations. In our study, we employ three machine learning
algorithms: Artificial Neural Network, Gradient Boosting, and
Support Vector Machines, to predict the FOS against
overturning for geotextile-reinforced walls. The subsequent
sections of this paper will delve into the methodology,
encompassing data collection and analysis, model
development, and validation. Through these efforts, we aim to
shed light on the practical advantages and implications of
adopting a data-driven approach in assessing the FOS against
overturning for geotextile walls.

1.1 Geotextile Reinforced Walls

Geotextile reinforcement, typically composed of materials
derived from petroleum products, serves multifunctional
roles, including drainage, filtration, separation, and
reinforcement. This versatility makes it a key component in
the construction of reinforced soil walls and foundation
engineering projects. = The design of such structures
necessitates careful consideration of both internal and
external stability factors.

1. Internal Stability The process encompasses the
calculation of spacing and length for each geotextile
layer, focusing on achieving a factor of safety for pullout
ranging from 1.3 to 1.5. Additionally, it entails the design
of geotextile layers to ensure a factor of safety against tie
failure, accounting for reductions in ultimate tensile
strength due to reduction factors [1].

2. External Stability The study primarily revolves around
the evaluation of the factor of safety against overturning,
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sliding, and bearing capacity. Specifically, our focus lies
on the factor of safety against overturning, which is
determined as follows:
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where y is Unit weight of backfill, K, is Rankine active
pressure coefficient, L is length of each layer of
geotextile , here length of each layer of geotextile is
calculated considering maximum value and same in all
layers.

1.2 Machine Learning Algorithms
1.2.1 Artifical Neural Network(ANN)

McCulloch and Pitts first introduced Artificial Neural
Networks (ANN). Artificial Neural Network (ANN) is one of the
most commonly used Al techniques in geotechnical
Engineering, and offers to be a promising tool in modeling of
complex engineering problems, where the relationship
between the model variables is unknown 5, or physical
visualization is difficult [6]. As described by [2], a parallel
distributed processor called an ANN is able to store and
process data from a set that was contributed outside of the
network. ANN learns from training patterns and exemplary
input-output relations provided to it [6]. The input, output,
and hidden layers of an artificial neural network (ANN) are
made up of a lot of simple, highly connected processing
elements (PEs) called neurons [2]. Weighted connections
allow these logically structured layers to speak with one
another [2]. Each neuron is connected to every other neuron
in the layer above it. The input layer shows the network a
pattern. One or more hidden layers communicate with the
input layer. The actual processing happens in the hidden
layers, where a network of weighted connections establishes a
connection between the inputs and outputs. A typical ANN
structure can be visualized from Figure 1.
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Figure 1: Typical working structure of ANN [2]

1.2.2 Support Vector Machines (SVMs)

A supervised machine learning model suitable for both
classification and regression problems is represented by

support vector machines (SVMs)[7]. SVMs are fundamentally
based on the idea of finding an optimal hyperplane that can
accurately separate different classes present within the
training dataset[8]. Hyperplanes, which can manifest as lines
in two dimensions, planes in three dimensions, or more
complex constructs in higher-dimensional spaces, function as
crucial decision boundaries[7]. SVMs seek to identify the
optimal hyperplane that maximizes the separation, referred to
as the margin, between this hyperplane and the closest data
points belonging to each class [9]. Given their critical
significance in setting the location and direction of the
hyperplane, which enables reliable classification or regression,
these crucial data points are known as support vectors [10].
SVMs possess the capability to manage nonlinearly separable
data through a method known as the kernel trick [10]. The
kernel trick involves a transformation of the original data into
a higher-dimensional space, enabling the discovery of a linear
hyperplane within that space [10]. Various kernel functions,
including polynomial, radial basis function, and sigmoid
kernels, can be employed to capture distinct forms of
nonlinearity present in the data [11]. Support Vector
Machines (SVMs) offer several advantages, including
exceptional accuracy, resilience to outliers, and the capability
to effectively manage high-dimensional datasets [9].
Nonetheless, SVMs come with certain limitations, including
substantial computational demands, susceptibility to
parameter choices, and a deficiency in interpretability [10].

1.2.3 Gradient Boosting

Gradient boosting serves as a crucial machine learning
technique widely employed across various applications,
encompassing regression and classification tasks[12]. Its
central concept revolves around constructing a prediction
model, notably an ensemble consisting of weak prediction
models, often in the form of modest decision trees [13]. The
fundamental concept that forms the basis of gradient
boosting revolves around an iterative process aimed at
continually refining prediction accuracy [5]. This process
unfolds by gradually introducing new weak models, with each
one assigned the responsibility of correcting the errors made
by its predecessors. [13]. Vitally, the creation of these novel
models relies on aligning them with the negative gradient of
the loss function, which serves as a measure of the model’s
adherence to the data [12]. Gradient boosting showcases its
versatility by supporting a wide range of loss functions,
including binary or multiclass log loss, mean squared error,
and Huber loss. Moreover, it offers extensive configurability
through parameter tuning, allowing for fine-tuning
adjustments to parameters such as the number of trees,
learning rate, tree depth, and regularization term [5]. Despite
being renowned for its exceptional predictive capabilities,
adaptability, and scalability, gradient boosting does have its
inherent limitations [5]. It may be vulnerable to overfitting,
demands careful parameter tuning, and presents difficulties
when it comes to interpretability [12].

2. Methodology

The method used in this study involves the generation of the
factor of safety against overturning using the analytical method
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Table 1: Input and Output Parameters

Parameters Unit Symbol Range Category
Wall Height m H 5,6,6.5,7 Input
Unit weight of backfill kN/m3 Y 15,16, 16.5, 18 Input
Internal angle of friction of backfill soil radians ) 0.5934, 0.5236, 0.5585, 0.6283 Input
Ultimate Tensile Strength kN/ms3 Tuie 50, 52.5, 55, 60 Input
Reduction Factor for installation damage - RF;4 1.4,1.5,1.6,1.7 Input
Reduction factor for creep - RF,, 2.5,2.75,3,3.5 Input
Reduction factor for chemical and biological degradation - RF pq 1.2,1.25,1.4,1.5 Input
Ratio of friction angle - 2 0.8,0.86, 0.87, 0.92 Input
Factor of Safety for overturning - FOSo 3.0626-3.4218 Output

suggested by [1] and feeding the data into the machine learning
model. The following represents the methodology process:

1. Database Preparation:

Table 1 shows the input parameters chosen within the limit.

The values for the factor of safety against pullout and tie
failure were fixed, and the reduction factor to reduce
ultimate tensile strength was taken within the limit
suggested by [1]. For the calculation of the factor of safety
against overturning, steps by [1] were taken. The variations
of data in database preparation is shown in Table 1.

. Model Preparation:

(a) ANN:

The methodology outlined in this research paper
employs a machine learning approach to predict the
“Factor of Safety for overturning" in a given context. The
study begins by loading a dataset from a CSV file, which
contains both input features and the target output. The
input data is then preprocessed and normalized using
standard scaling techniques to ensure that all features
have similar scales, thus preventing any one feature
from dominating the model’s learning process. To
assess the predictive capability of the model, the
dataset is split into training and testing sets using a
80%-20% split ratio. The machine learning model
chosen for this task is a neural network constructed
using the TensorFlow and Keras libraries. The neural
network architecture consists of an input layer with
eight nodes (matching the number of input features),
followed by two hidden layers with 64 and 32 neurons,

respectively, both employing ReLU activation functions.

The final output layer, designed for regression, contains
a single node. For model training, the Adam optimizer
is utilized with the mean squared error loss function,
and the model is evaluated based on the mean absolute
error metric. The training process involves 50 epochs
with a batch size of 32. Once trained, the model is used
to make predictions on the testing set, and the
R-squared (R?) metric is employed to assess the model’s
predictive accuracy. Finally, a scatter plot is generated,
displaying the relationship between actual and
predicted values, along with the (R?) value to provide
insights into the model’s performance.

(b) Gradient Boosting:

(©

Firstly, the dataset is loaded from a CSV file, splitting it
into input features (X) and the target output (y), where
the target variable represents the structural stability
measure. Next, to enhance model performance and
convergence, the input features are standardized using
the Standard Scaler. While not always obligatory for
Gradient Boosting, this preprocessing step ensures that
all features share a consistent scale.

The dataset is then divided into training and testing sets,
allocating 80% for model training and reserving 20% for
evaluation. This separation is crucial to assess how well
the model generalizes to unseen data.

The model is trained using the training dataset, refining
its predictions iteratively to minimize errors and
optimize its fit to the target variable. Once training is
complete, the model is employed to make predictions
on the testing dataset. This allows for the assessment of
its performance on previously unseen data.

Performance evaluation is conducted using two
fundamental metrics: R-squared (R?) gauges the
model’s ability to explain variance in the target variable,
while Mean Absolute Error (MAE) quantifies the average
magnitude of errors between predicted and actual
values.

To provide a visual representation of the model’s
performance, a scatter plot is generated, illustrating the
relationship between actual and predicted values.

Support Vector Machines:

In this methodology, we employ Support Vector
Machines (SVM), specifically a Support Vector
Regressor (SVR), with a polynomial kernel to predict the
Factor of Safety for overturning in geotextile-reinforced
walls. The process commences by loading the relevant
dataset from a CSV file, which includes both input
features and the target output variable representing
structural stability.

To ensure the model’s performance and convergence,
we apply feature standardization using the Standard
Scaler. This step is particularly crucial when working
with SVM models, as they are sensitive to variations in
feature scales.

Subsequently, the dataset is split into training and
testing sets, with 80% allocated for model training and
20% reserved for evaluation. This division is essential to
assess the model’s ability to generalize its predictions to
unseen data accurately.
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We create an SVR model with a polynomial kernel, and
hyperparameters such as the degree of the polynomial
kernel can be adjusted to fine-tune the model’s behavior.
The SVR model is then trained using the training dataset,
iteratively refining its predictions to minimize errors and
optimize its fit to the target variable.

After training, the model is employed to make
predictions on the testing dataset, enabling the
assessment of its performance on data it hasn't
encountered before. To evaluate the model’s
performance, we utilize two key metrics: R-squared (R?)
to measure its ability to explain variance in the target
variable and Mean Absolute Error (MAE) to quantify the
average magnitude of errors between predicted and
actual values.

To provide a visual representation of the model’s
predictive capability, we generate a scatter plot that
displays the relationship between actual and predicted
values. Additionally, a trendline is added to the plot,
showing the linear relationship between these values.
This trendline helps in visualizing how well the model’s
predictions align with the actual data points.

3. Results

The individual performance plots for each machine-learning
model are presented, revealing distinctive insights into their
predictive capabilities. Artificial Neural Networks (ANN) and
Gradient Boosting exhibit remarkable proficiency in
forecasting the factor of safety against overturning for
geotextile-reinforced walls. Conversely, Support Vector
Machines (SVMs) lag significantly behind in their predictive
power among the three machine learning models employed in
this study. This discrepancy may be attributed to the
hyperparameters governing the SVM algorithm, highlighting
the importance of fine-tuning model settings for optimal
performance.

In summation, the data-driven approach adopted in this study
has yielded valuable insights into the factor of safety against
overturning in geotextile-reinforced walls. By leveraging
machine learning techniques, this research empowers
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Figure 2: ANN:Model Performance

engineers to explore parametric variations in the preliminary
design of such structures. The superior performance of ANN
and Gradient Boosting models underscores their potential to
enhance the accuracy and efficiency of geotechnical design
processes. These findings illuminate a promising avenue for
future applications, emphasizing the importance of tailoring
machine learning algorithms to the specific nuances of
geotechnical engineering challenges.
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