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Abstract
This paper examines the dynamic analysis of fluid-conveying pipes with excited supports, considering various end conditions and
materials. At first the fluid acceleration is derived through the dynamic method and then the governing equation of motion is derived
via Newtonian method. Furthermore, Galerkin method is used to discretized the dynamic equation and numerical analysis is
performed via fourth-order-Rung-kutta method. In given end conditions, the transverse deflection, deflection at different location
throughout the length, bending moment at different fluid velocity are studied for two different pipe materials for two boundary
conditions i.e pinned-pinned and pinned-free. The conclusion so made in this paper indicates that the deflection as well as bending
moment increases with fluid velocities which suggests as the fluid speed increases, the pipe’s stiffness decreases. Similarly the
bending moment magnitudes for both pinned-pinned and pinned-free ends for both pipe materials is seen maximum at middle
position in comparison to at either ends.
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1. Introduction

Pipelines used for fluid transportation are commonly
employed in different areas like Hydropower, water irrigation,
petroleum transportation, nuclear power plant etc. The
dynamic response caused due to fluid flow and fluid-structure
interaction, however, often caused serious vibration and
threatens the normal and safe operation of the entire systems.
Such failures are becoming main reason to economy losses in
worldwide. This is the reason why so many studies are being
performed in flow induced vibration and many dynamical
model are being formed [1, 2, 3].

The governing equation of a fluid-conveying pipe is typically
obtained using generalized Hamilton’s principle, the finite
element method, or the Newtonian method. [4, 5].

The numerical solution techniques, the extended dynamic
model pipe and dynamic characters for more specific
problems, are becoming the areas for study. Ivan Grant [6],
Utilized a finite-element method to simulate and solve the
dynamic responses of the pipeline under two different sets of
boundary conditions, namely simply-supported and
cantilevered. Y L Zhang et al. [7] used the he Lagrange
principle, the Ritz method to derive equation of motion.
Additionally, employed the Eulerian approach along with the
concept of fictitious loads to account for kinematic
corrections in the analysis of geometrically non-linear
vibrations. The model was subsequently tested experimentally
to examine the vibrational characteristics of the
fluid-conveying pipe, of simply supported, subjected to initial
axial tensions. The same geometric parameters, used in
experiments are also used in this research paper.

Similarly, Naguleswaran [8] used Rayleigh–Ritz as well as
Fourier series solutions for the investigation of the lateral
vibration of end conditions of the pipe conveying fluid with

consideration of axial tension and internal pressure.This study
explores the natural frequency equations for fluid-structure
interaction in a pipeline conveying fluid with support at both
ends, employing a direct approach [9]. The method, derived
from Ferrari’s technique, is applied to solve quartic equations.
The dynamic equation for the fluid-conveying pipeline is
derived using Hamilton’s variation principle based on
Euler-Bernoulli Beam theory. Natural frequency equations
and critical flow velocity equations for pipelines with support
at both ends are obtained using the separation of variables
method and the modified Ferrari’s method. These equations
are then compared with natural frequency results obtained
using the eliminated element-Galerkin method [10].

The effect of coriolis force, shear and inertia of cross-section,
inside pressure and the centrifugal force of the flow on
transverse vibration of bellows are studied by both finite
element and Hamilton’s principle methods by using
Timoshenko beam theory [11]. The investigation of the
natural frequency of fluid-structure interaction in a
fluid-conveying pipe is carried out using the eliminated
element-Galerkin method. This method is used to derive
natural frequency equations under various boundary
conditions [12]. In this research paper we used the derived
expression of comparison function, as is derived in
mechanical vibration book written by S.S Rao [13].

In every areas of application of a pipeline usually works in the
vibration environment. Such as, constrained ends of the
penstock conveying water is excited by the water hammer
effect or the earthquake, the fuel pipeline is positioned over an
engine, alongside airborne pipes, and other fluid machinery
parts. In this situation, the pipe supports are subject to
external vibrations. This can result in the relaxation of
constraints, potential pipe fatigue, and the risk of leakage in
such conditions. This study examines the dynamic response
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characteristics of a pipe, taking into account both the
interaction between the fluid and structure, as well as the
influence of externally induced vibrations on the supports.
Initially, the dynamic equation for the pipeline with externally
excited supports is derived using the Newtonian method,
following the determination of fluid element accelerations as
explained in the "Mathematical modelling" section.
Subsequently, the Galerkin method is employed to construct a
discrete dynamic model, and numerical analysis is conducted
using the fourth order Runge-Kutta approach. Ultimately, the
study explores the effects of fluid velocity and the frequency of
external support-induced vibrations on the dynamic response
of the pipe. The study includes an examination of pipes with
two different end conditions, namely, those with
pinned-pinned and pinned-free configuration.

2. Mathematical Modelling

The diagram of Pipe conveying fluid is as shown in Figure 1.
The XOY coordinate system serves as the global inertial
reference frame (unit vectors I and J). The local reference
frame, xoy , is defined with respect to the supports is in
reference to the supports (unit vectors i and j ), as well as
lateral velocity v0, and lateral acceleration a0. The
measurement of lateral deflection w is conducted within the
local xoy frame.

Figure 1: Schematics view of pipe conveying fluid

The fluid element’s acceleration, is as shown in Figure 2, is
needed to derive the governing dynamic equation of Pipe
conveying fluid by the Newtonian approach. So, we present an
additional moving reference frame x ′o′y ′, where (unit vectors
i ′ and j ′), which attached to the pipeline element. Parameters
φ specify the slope angle of pipe cross-section and ρ specify
the curvature radius of a deformed pipe element. By ignoring
changes in the radial direction, we can represent the fluid
element’s acceleration as the acceleration of fluid particle at
the point O′.

The dynamics composition theory can be used to express the
fluid element’s acceleration as follows:

a f = ar +ae +2ωV , (1)

where ae , denoting convected acceleration, stands for the
acceleration of point O′ which is fixed in reference frame
x ′o′y ′ in relation to the inertial reference frame i.e., XOY and
ar represents the relative acceleration, that is the acceleration
fluid respective to the reference frame x ′o′y ′. The pipe cross
section’s angular velocity is represented by the ω, i.e,
ω = (dφ/d t)k ′, where k ′ is unit vector normal to the plane

Figure 2: Fluid and pipe element

XOY outwards. V, the fluid’s velocity in the pipeline, i.s,
V =V i ′. The expression in Equation (1) is expressed as follows
[1]:

ar = dV

d t
i′− V 2

ρ
j′, (2)

ae = ∂2δ

∂t 2 i+ (a0 + ∂2w

∂t 2 )j ≃ (a0 + ∂2w

∂t 2 )j, (3)

2ωV = 2V
dφ

d t
k′× i′ = 2V

∂2w

∂s∂t
j′, (4)

where δ is the longitudinal displacement, which is neglectable
because it is the one order of magnitude smaller in compare to
the lateral deflection w.
Substituting Equation (3) and
1/ρ = −(∂2w/∂s2)/((1 + (∂w/∂s)2)3/2) ≈ −∂2w/∂s2 into
Equation (1), we have

a f =
dV

dt
i′+ (2V

∂2w

∂s∂t
+V 2 ∂

2w

∂s2 j′)+ (a0 + ∂2w

∂t 2 )j. (5)

Equation (5) is further simplified by the transformation
relationship in between unit vectors i.e. i′, j′ and i, j. Since the
pipe experiences only minor deformations, so the
transformation is described in the following manner:(

i′

j′

)
=

(
cosϕ sinϕ
−sinϕ cosϕ

)(
i

j

)
≈

(
1 ∂w

∂s
− ∂w

∂s 1

)(
i

j

)
(6)

The equation for fluid acceleration is given by substituting
Equation (6) into Equation (5) while ignoring the second or
higher level of infinitesimals, is as follows.

a f =
dV

dt
i+ (

dV

dt

∂w

∂s
+2V

∂2w

∂s∂t
+V 2 ∂

2w

∂s2 + ∂2w

∂t 2 +a0)j.

(7)

Assuming that the pipe holds a constant flow of fluid and is
not elongatable in the longitudinal direction, that is, s ≈ x and
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also dV /d t = 0, Further simplification of Equation (7) can be
expressed in the following manner:

a f = (2V
∂2w

∂x∂t
+V 2 ∂

2w

∂x2 + ∂2w

∂t 2 +a0)j. (8)

Now the governing dynamic equation is derived with the

Figure 3: Schematic diagram of pipe element.

Newtonian method, after obtaining the fluid acceleration. The
illustration in Figure 3 depicts the free body diagram of the
pipe segment, where M and Q are bending moment and the
transverse shear force. The pipe is having fluid pressure p̄ and
fluid flow area A. m f is the the masses of fluid and mp is the
masses of pipe per unit length. Let FI f , denoted as the inertia
force on the fluid and FI p , as inertia force on the pipe
elements. Thus, the equation describing the lateral vibration
motion of a fluid-conveying pipe can be presented as follows:

∂Q

∂x
− p̄ A

∂2w

∂x2 = FI f +FI p = m f a f +mp (a0 + ∂2w

∂t 2 ). (9)

By inserting the Equation (8) in Equation (9) and utilizing the
connection between the shear force and the bending
moment,that is,
(∂Q/∂x) = −(∂2M/∂x2) = −(∂2/∂x2)(E I (∂2w/∂x2)), the
equation of lateral vibration of motion is ultimately presented
as follows:

E I
∂4w

∂x4 + (m f V 2 + p̄ A)
∂2w

∂x2 +2m f V
∂2w

∂x∂t
+ (m f +mp )

∂2w

∂t 2

=−(m f +mp )a0.

(10)

When the pipe ends vibrate as harmonically, i.e., A0 sinω0t ,,
where the acceleration is a0 =−A0ω

2
0 sinω0t , and resulting in

the governing dynamic equation of the motion as follows:

E I
∂4w

∂x4 + (m f V 2 + p̄ A)
∂2w

∂x2 +2m f V
∂2w

∂x∂t
+ (m f +mp )

∂2w

∂t 2

=−(m f +mp )A0ω
2
0 sinω0t .

(11)

In order to make dimensionless, the subsequent
dimensionless parameters are employed to derive the
dimensionless version of the equation (11): η = w

L , ξ = x
L ,

u = ( M
E I )1/2LV , P = p̄ A

E I L2, β = (
m f

m f +mp
)1/2, τ = ( E I

m f +mp
)1/2 t

L2 ,

ω= (
m f +mp

E I )1/2ω0L2, γ= A0
L

where L is length of a pipe.
Ultimately, Equation of motion (11) takes on a dimensionless

form as follows

∂4η

∂ξ4 +(u2+P )
∂2η

∂ξ2 +2β1/2u
∂2η

∂ξ∂τ
+ ∂2η

∂τ2 = γω2 sinωτ. (12)

3. Dynamic Analysis

To deal with above equation of motion (12), galerkin method
is applied. The dimensionless lateral deformation is denoted
as follows:

η(ξ,τ) ≃
N∑

i=1
φi (ξ)qi (τ), (13)

Here, φi (ξ) is Comparison functions and assure the end
condition, and qi (τ) is the generalized coordinates of the
discretized pipe structure. By inserting Equation (13) in
Equation (12) and minimizing the residual value, we derive
the subsequent discrete dynamic equation:

Mq̈+Dq̇+Kq = F, (14)

Where, Mass matrices Mi j = ∫ 1
0 φi (ξ)φ j (ξ)dξ, Damping

matrices Di j = 2β1/2u
∫ 1

0 φ
′
i (ξ)φ j (ξ)dξ, Stiffness matrices

Ki j = ∫ 1
0 [φ

′′′′
i (ξ) + (u2 + P )φ

′′
i (ξ)]φ j (ξ)dξ, External Load

F j = ∫ 1
0 γω

2 sinωτφ j (ξ)dξ, and q̇ and q̈ are the generalized
velocity and acceleration.

In order to solve Equation (14), the fourth order Runge–Kutta
approach is used and take the following form:

Ẏ(τ) = AY(τ)+P(τ), (15)

where Y(τ) =
(
q(τ)
q̇(τ)

)
, A =

(
0N×N IN×N

−M−1K −M−1C

)
, P(τ) =

(
0N×1

M−1F

)
.

IN×N is N-ordered identity matrix.
In the realm of numerical analysis, the dimensionless time
step is defined as ∆τ = 0.002, and the initial conditions are
given as q(τ) = q̇(τ) = 0. As per Ni et al. [14], the convergence
is achieved when galerkin truncation error in equation (13) set
to N ≥ 4 and we choose N= 4 for the subsequent analysis.

4. Model Validation

To demonstrate the efficiency of the proposed approach, we
compare those results obtained through both analytical mode
superposition method of classical beam problems and the
newly suggested method in case of rubber pipe with
pinned-pinned end conditions. The common parameters of
pipe used for study are as tabulated in Table (1). In the case of
a solid beam, it can be treated as a Pipe Conveying Fluid (PCF)
with zero fluid velocity (u = 0) and no internal pressure (p̄ = 0).
We will compare the results when is u = 0 as well as p̄ = 0.
Equation (12) clearly represents the condition of a pipe with
fixed supports under the influence of a uniform load as
p(ξ,τ) = γω2 sin(ωτ). In this scenario, as per beam theory [13],
the lateral deflection of a pipe is formulated as in Equation
(16).

η(ξ,τ) =∑
φi (ξ)qi (τ). (16)

Now, by inserting Equation (17) into Equation (16), we can
derive the analytical solution for the deflection of the pipe. We
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observe that the outcomes obtained through the mode
superposition method remain stable for i ≥ 3. Therefore, we
choose i = 4 for the purpose of comparison. The results
obtained through the two methods, closely align with each
other as shown in Figure (4). Thus, the validation of the
proposed method is confirmed.

Figure 4: Comparing the deflection of the pipe with pinned
ends using two methods

5. Results and Discussion

Figure 5: Pinned-pinned pipe end condition

In this section, two different materials pipes are analyzed and
results are compared. Pipes with two end conditions: pinned-
pinned, and pinned-free are studied. In each end conditions
two different materials are studied in respect of deflection and
bending moment.

The parameters employed for model validation are also utilized
in the numerical analysis are as tabulated in Table (1).

Table 1: Parameters for Study

SN Parameters Values
1 Length of pipe 0.362m
2 Outside diameter of pipe 9.7mm
3 Inside diameter of pipe 6mm
4 Density of water 1000 kg /m3

5 Mean inner Pressure(P̄ ) 2 MPa

Figure 6: The deflections of the rubber pipe with
pinned-pinned ends at various fluid velocities: (a) when u=0,
(b) when u=1, and (c) when u=2
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Figure 7: The deflections of the steel pipe with pinned-pinned
ends at various fluid velocities:(a) when u=0 (b) when u=1,
and (c) when u=2

The supports undergo harmonic motion, i.e., A0 sin(ω0t ), with
amplitude of A0 = 0.012m and angular frequency of
ω0 = 488.28πr ad/s. Young’s modulus of elasticity for Rubber

and steel are taken as 2.924 GPa and 207 GPa respectively.
Density of steel as well as rubber are 8000 kg /m3 and 1128.56
kg /m3 respectively. Similarly total mass per unit length of
steel and rubber is 0.36 kg/m and 0.05 kg/m respectively.

Figure 8: The deflections at various points along the rubber
pipe with pinned-pinned ends under different fluid velocities:
(a)when u=0, (b) when u=1, and (c) when u=2
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Figure 9: The deflections at various points along the steel pipe
with pinned-pinned ends under different fluid velocities:
(a)when u=0, (b) when u=1, and (c) when u=2

5.1 The Pinned-Pinned end condition

As per beam theory, comparison function for the
pinned-pinned pipeline, is shown as in Figure 5, is

φi (ξ) = sin(iπξ). Assuming the uniform an external load
p(ξ,τ) = γω2 sinωτ and the initial condition, that is, η(ξ,0) = 0,
η̇(ξ,0) = 0. Likewise, it is possible to express the generalized
coordinate analytically [13] as in equation (17). Here, ωi

represents the ith natural frequency of the pipe with
pinned-pinned ends.
To compute the deflection, the first four natural frequency
modes are determined using the wave approach method
initially introduced by Li et al. [12]. The natural frequencies
results are tabulated in Table (2).

qi (τ) = (1− (−1)i )
1

ωi

2γω2

iπ

∫ τ

0
sinωζsinωi (τ−ζ)dζ

= 2γω2

iπ

(1− (−1)i )

ω2
i

(sinωτ− ω

ωi
sinωiτ)

(17)

Table 2: The dimensionless first four modes of natural
frequencies of the pinned-pinned Pipe end condition.

u ω1 ω2 ω3 ω4

0 9.86 39.44 88.79 157.87
1 9.23 38.57 87.62 156.52
2 8.42 36.33 86.35 155.46

The three deflection curve modes shown in Figure 6 and
Figure 7 vary for each scenario. Here, deflection graphs as in
Figures 6(b) and 6(c) for rubber material pipe and the
deflection graphs in Figures 7(b) and 7(c) for steel material
pipe, resemble each other because of the fluid flow inside the
pipe. The graphs in Figure 6 and 7 illustrate that deflections
progressively rise as fluid velocity increases. This indicates
that as the fluid velocity increases, the flexural rigidity of a
pipe diminishes. The impact is also evident in the natural
frequencies of pipe under varying fluid velocities.

Similarly, Figure 8 and 9 depict the deflection curves of the
pipe at various positions (ξ = 1/2, and ξ = 1/4, and ξ = 1/8)
under different fluid velocities (u = 0, and u = 1, and u = 2).
Figure 8 for rubber material pipe and figure 9 for steel material
pipe implies that the deflection’s magnitude grows with the
fluid velocity. The greatest deflection is observed at the pipe’s
midpoint. The deflection of a point diminishes as the point
approaches either end of the pipe. As the fluid velocity rises,
the response curves become progressively more scattered.
This suggests that the time it takes for the response to occur
increases, indicating a reduction in natural frequency.

Another dynamic response, bending moment, for the pipe can
be analysed through following dimensionless bending
moment:

M̄ = ML

E I
= ∂2η

∂ξ2 (18)

Figure 10 and 11 shows curves of bending moment on the
pinned-pinned of rubber and steel pipe at three distinct
positions along the pipe (ξ= 1/2, and ξ= 1/4, and ξ= 1/8) in
relation to three varying fluid velocities (u = 0, and u = 1, and
u = 2).

In Figure 11(a), at a fluid velocity of (u = 0), the bending
moment at (ξ = 1/2) is greater than that at (ξ = 1/4) and
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(ξ = 1/8), but the bending moments are at (ξ = 1/4) and
(ξ= 1/8) exhibit only a slight difference. As the fluid velocity
increases, the bending moments at all three positions also
increase concurrently.

Figure 10: The bending moments at various positions along
the rubber pipe with pinned-pinned ends under different
fluid velocities: (a) when u=0, (b) when u=1, and (c)when u=2

Figure 11: The bending moments at various positions along
the steel pipe with pinned-pinned ends under different fluid
velocities: (a) when u=0, (b) when u=1, and (c) when u=2
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Figure 12: The deflections of the pinned-free ends of rubber
pipe with various fluid velocities:(a) when u=0 (b)when u=1 (c)
when u=2

Figure 13: The deflections at various points along the rubber
pipe with pinned-free ends under different fluid velocities: (a)
when u=0, (b) when u=1, and (c)when u=2
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5.2 The Pinned-Free end condition

A different category of fluid-carrying pipe is one with pinned-
free end condition whose comparison function is given by [13]
as follows:

φi (ξ) = sinβiξ+αi si nhβiξ, (19)

where αi = sinβi l
si nhβi l and βi l = (i + 1/4)π as when i ≥ 1. The

values of βi l are tabulated in Table 3 [13].

Table 3: The values of βi l for pinned-free pipe conveying
fluid.

β1l β2l β3l β4l
3.9366 7.786 10.1102 13.4518

The deflection responses of pipe under three different
velocities of fluid (u = 0, and u = 1, and u = 2) are depicted at
three distinct time points (τ= 10, and τ= 20, and τ= 30) is as
shown in Figure 12. None of the cases in Figure 12 exhibit a
symmetric mode because of the asymmetric supports. The
deflection of a pipe does not change consistently with the
velocity of fluid. At time when τ= 10, as the velocity of fluid
increases, the deflection initially rises and subsequently
decreases. Nevertheless, at τ= 20, the deflection consistently
increases.At τ= 30, the deflection initially exhibits a decrease
and then subsequently rise.

Figure 13 shows the deflection curves of the pipe with
pinned-free ends, conveying fluid, at various positions
(ξ = 1/2, and ξ = 1/4, and ξ = 1/8), and under different fluid
velocities (u = 0, and u = 1, and u = 2). It can be noted that
deflections increase as fluid velocity rises. Nonetheless, when
compared to the pinned-pinned pipe, the pinned-free pipe
exhibits a smaller fluctuation in deflection. This difference is
primarily attributed to one end being pinned while the other
is free in the pinned-free pipe, resulting in a lesser impact on
the pipe’s deflection by the same fluid velocity.

Likewise, Figure 14 presents the graphs of bending moment
for the pinned-free pipe under various scenarios. Figure 14
reveals that, in each instance, the highest bending moment on
a pinned-free pipe occurs at ξ = 1/2, consistent with the
behavior of a pinned-pinned pipe. Nevertheless, the bending
moment at position ξ = 1/8 is greater than the bending
moment at position ξ= 1/4, which differs from the behavior of
the pinned-pinned pipe. The bending moment on the
pinned-pinned pipe is considerably smaller than that on the
pinned-free pipe.

Figure 14: The bending moment at various points along the
pinned-free pipe under various fluid velocities:(a) when u=0
(b) when u=1 (c)when u=2
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6. Conclusions

This study explores the dynamic behaviors of fluid-conveying
pipes made of rubber and steel with pinned-pinned and
pinned-free end conditions, subjected to excited supports.
The paper derives dynamic equations using the Newtonian
method after calculating fluid acceleration. Numerical
analysis is conducted using the Galerkin method and
fourth-order Runge-Kutta method. The study investigates
deflection and bending moment responses under various
fluid velocities and materials. The conclusions are made as
follows:
1. The deflection as well as bending moment increases with
fluid velocities. This suggests that as the fluid speed increases,
the pipe’s stiffness decreases.
2. The largest deflection occurs on a pinned-pinned pipe seen
at position (ξ= 1/2). The deflection at position ξ= 1/4 as well
as ξ = 1/8 is less difference in comparison, which is not in
accordance of the fluid velocity. The deflection is more in
Rubber pipe in compare to steel pipe with given same
parameters.
3. The bending moment magnitudes for both pinned-pinned
and pinned-free pipes follow the order
M̄(ξ = 1/2) > M̄(ξ = 1/8) > M̄(ξ = 1/4) when the fluid is at a
standstill. However, as fluid velocity increases, it is observed
that bending moment at position ξ = 1/4 increases quickly
and approaches a magnitude close to that at position ξ= 1/8.
4. The impact is also evident in the natural frequencies of the
pipe at varying fluid velocities.
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