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Abstract

In hydropower intakes, a simply supported trash rack is used to prevent trash from entering the water conveyance system. Due to
variable load requirements in the turbine, the trash rack experiences vibration during power plant operation. The resonance causes
fatigue damage to the trash rack bar and is not limited to the trash rack itself. It is directly linked to the hydro turbine. Any damage
due to trash in the turbine may cause the plant to shut down, powerhouse damage, life loss, results in revenue loss among many.
Thus, the study of the vibration of a trash rack is important and this paper investigates trash rack bars of varying cross-sections and
uniformly distributed harmonic force which may help hydropower designers avoid catastrophic failure in power plants. The equation
of motion for the transverse vibration of the rectangular bar was derived and solved for the free and forced vibration. For the first
mode shape of transverse vibration, the percentage error of free vibration analysis between analytical and numerical methods was
found to be under 10 %, while for higher mode shapes, it was found to be 33 %. For the harmonic analysis, the Mode Superposition
Principle (MSUP) was used. Plotting the equivalent stress and amplitude against the harmonic force reveals a linear relationship.
To verify the structural integrity of the bar at resonance, the equivalent stresses were then compared to the permissible stresses.
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1. Introduction

To prevent trash from getting into the water conveyance
system, virtually all hydropower plants have a trash rack at the
entry. The trash rack bar is designed as a simply supported
beam because it offers easy installation and maintenance,
simple design, cost-effectiveness, replacement and repair if
damaged, ability to withstand variable water pressure and
most importantly it has a predictable behaviour under load
which ensures the safety of both personnel and structure. Size

and shape are determined by the specifications of the project.

They are made from bars, which are often rectangular sections
that are angled or vertically orientated at the necessary
spacing. These bars link together to create a panel vertically or
horizontally covering the orifice at intakes.

An unavoidable consequence of protection against trash via a
rack is vibration. Vibration causes damage to the structure,
reduces its effectiveness in trapping debris, and increases
maintenance costs, cracks and fatigue damage. Research has
shown that trash rack vibration is caused by a combination of
factors, including the flow of water through the rack, the
shape and geometry of the rack, and the properties of debris
that are trapped in the rack.

The most common method to reduce trash rack vibration is
by optimizing the design of the rack. And, there are no widely
accepted guidelines for the design and maintenance of trash
racks to prevent vibration. Therefore, an effect of vibration on
individual bars of different cross-sections is presented.

Among an object’s distinguishing properties is vibration. The

initial displacement is transient, and the type of deformation
is contingent upon the boundary condition referred to as the
system’s free vibration. The object comes to rest as a result of
the damping force produced inside the system after a certain
amount of time. In free vibration, mode forms corresponding
to the natural frequencies are obtained. Force, pressure,
temperature, wind, and other factors can all cause the system
to vibrate forcefully and may cause resonance. Resonance
occurs when the system’s frequency coincides with its natural
frequency. The system oscillates at its highest amplitude when
in resonance, which might lead to system fatigue failure.

A formula for determining the natural frequency, the vortex
shedding frequency, and the suggested ratio between them
was put out by Levin. It was also pointed out that a bar’s
inherent frequency in water can differ significantly from that
of the bar in air[1]. Sell presented the detailed design of a trash
rack for hydropower[2]. Naudascher in his publication
explicitly covered the flow-induced vibration (FIV)[3]. IS
11388 which is the basis of this paper relies upon Levin and
Sell[4]. Nascimento found out that the added mass effect due
to water reduces the natural frequency by about 30 per cent
which as per Levin is verified. Further, it was noted that the
damage to the trash racks is due to several operating
conditions resulting in fluid-dynamic exciting forces acting at
resonant frequencies [5]. Crandall et al. while experimenting
on the half-scale model discovered “locked-in” during normal
flow rates. They changed the bar cross-section and added
damping to eliminate this phenomenon[6]. Nguyen and
Naudascher determined the effect of Karman vortices and
impinging leading-edge vortices at zero flow incidence for
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different rectangular sections[7]. A natural frequency that is
twice the vortex shedding frequency is what Hollenstein
discovered to prevent vibration from producing maximum
amplitude[8]. Huang et al. compared experimental and
numerical results for natural frequencies and found a
maximum error of -1.4% to 6.7% without affecting mode
shape both in air and water. It is also found that the water
decreases the natural frequency and the added mass depends
on mode shapes[9]. According to Haddara and Cao’s findings,
the additional mass brought by water during submergence is
dependent on the depth of submergence up until a certain
point, after that the added mass becomes constant. Through
experiments, it was discovered that the depth of submergence
had no effect on the mode shapes and that damping greatly
rises after the plate comes into contact with water and stays
that way even after varying depths of submergence[10]. Using
a solid-acoustic finite element model that represents sound as
a fluid, Stenius et al. investigated fluid-structure interaction
(FSI) and reported that deviation in natural frequency air can
be reduced by 70% from simple to complicated
geometries[11]. Gawali et al. carried out the modal analysis of
a simply supported beam with/without crack both analytically
and experimentally. They found out that frequencies of
cracked beams decrease with increasing crack depth due to
reduced stiffness[12]. Kumar et al.. studied modal analysis of
cantilever, simply supported and fixed beams and found that
deviation from analytical to numerical and experimental was
found to be within 6% and 19.31% respectively[13]. Ghodge et
al. carried out the modal analysis of the cantilever and simply
supported the beam using structural steel, aluminium alloy,
copper alloy, and grey cast iron with added mass and found
that structural steel with higher natural frequency[14]. Xue et
al.. used areduced-order model in a large trash rack to study
the dynamic nature and verified vibration in the trash rack
occurs due to the non-linear vibro-impact aspect which can
be helpful in optimizing structural vulnerability during an
early stage[15].

The researchers presented formulae to determine the natural
frequency, studied flow-induced vibration and their
relationship with resonance, experimented with the half-scale
model, presented results using computational fluid dynamics,
and developed models such as solid acoustic finite element
and reduced order to study vibration. However, research
based on trash rack bars in hydropower intakes with varying
cross-sections and uniformly distributed harmonic force was
found scarce which this paper aims to fulfil. Furthermore,
apart from the modal analysis, a different approach to
harmonic analysis in terms of the stress and deflection of the
bar during resonance was studied and presented in this paper.

2. Methodology

The expression for the kinetic and potential energy was
formulated and the Lagrange principle was used. The work
done by the external longitudinal force was then formulated.
And, the extended Hamilton’s principle was applied to
combine the energies of the system and the equation of
motion for the transverse vibration was derived. The equation
of motion was solved for

e free vibration: simply supported boundary condition,
and

e forced vibration: simply supported boundary condition
with external harmonic force.
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Figure 1: Methodology

The bar’s natural frequencies were determined using the
modal equation derived from the free vibration, and the
numerical result was compared with the results. Furthermore,
the clear spacing and head difference in bars were used to
compute the necessary harmonic force. Next, the Strouhal
number, effective velocity, and bar thickness were used to
calculate the forcing frequency. For harmonic analysis, the
mode superposition principle (MSUP) was used. The phase
angle, maximum amplitude, and resonance frequency were
obtained from the harmonic study. Then, the resonance
frequency and phase angle obtained from the frequency
response were used to obtain the maximum equivalent stress
and compared with permissible stress to verify the stability of
the bar during resonance.

3. Mathematical Derivation

3.1 Equation of Motion of a Bar

Considering a simply supported rectangular bar of length L
with a uniformly distributed load f (x, ) with beam density p,
modulus of elasticity E, cross-sectional area A, and moment of
inertia I. Then, the transverse displacement of the bar is given
by w(x, t). Then, the kinetic energy of the rectangular bar can
be expressed as [16]

T:lprA(a—w)2 dx (1)
2 Jo ot
The strain energy of the rectangular bar can be expressed as
(16]

1 (L o w\’
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The Lagrangian functional for the system can be expressed as
(16]

L=T-V

1 L ow\? 4 1 L 2w\ 4 @)
= — Al — —_— EI -
Zfop (ar) g Zfo y(axz) gy
The work done by the external force can be expressed as [16]

L
W,w:f frudx 4)
0
The extended Hamilton’s principle can be expressed as [16]

2]
(OL+6Wy)dt=0 (5)
5]

and, the equation of motion for the assumed system can be
derived from equation (5) as [16]

2 4
dcw(x,t) +E1d w(x,t) - D) ©)

A
Pa—ar dx

3.1.1 Free Response: Transverse Vibration

Substituting f(x,f) = 0 in equation (6) and for a simply
supported bar with boundary conditions as
w(0,1) =0;w"(0,t) =0and w(L, t) = 0;w" (L, t) = 0, the natural
frequency can be determined as [16]

nmy\2 | EI
on= (=) /=5 5 n=123.. @)
L pA
The general steady-state response of the beam undergoing
transverse vibration is given by [16]

o nnx .
w(x, t) = Z s1n(T) [Gpsin(w, 1) + Hycos(wy )] (8)
i=1

Arbitrary constants G, and H,, are determined from the given
initial conditions.

3.1.2 Forced Response: Transverse Vibration

Substituting f(x,1) = fosin(wt) in equation (6) and for a
simply supported bar with boundary conditions as
w(,t) = O;w"(0,t) = 0 and w(L,t) = O;w"(L,t) = 0, the
steady-state response of the beam undergoing transverse
vibration is given by [16]

Jfo BL. . B BL
202pA [tan( 5 )sin(Bx) —tanh( 5 ) ©

sinh(Bx) + cos(Bx) cosh(Bx) — 2] sin(wt)

w(x,t) =

4. Modal Analysis

A rectangular bar was used for the modal analysis. The length
of the bar was kept constant and selected as such because
the trash racks can be stacked horizontally/vertically, and its
multiple lengths (1000 mm ) can be used to cover the required
opening considering stability, transportation, installation and
maintenance. The standard thickness was chosen. Based on
the thicknesses the width was chosen as per IS 11388. The bar

specification and nomenclature are listed in Table 1 and Table
2 respectively.

Table 1: Bar Specification

SN | Description Value
1 Material Structural Steel
2 | Yield Stress (Y'S) 250 MPa
Ultimate tensile
3 strength (UTS) 410 MPa
4 | Density of bar (p) 7850 kg/m®
5 Youn.g s Modulus of 200 GPa
Elasticity (E)
., 30 mm, 50 mm, 80 mm,
6 Bar Spacing’s (s) and 100 mm
7 | Head Difference (H) 1m,2m,3m,4m,5m,
and 6 m

Table 2: Bar Nomenclature

SN | Dimensions (/ x bx h) mm | Notation
1 1000 x100x 10 Bar 1
2 1000x120x 12 Bar 2
3 1000x 140x 14 Bar 3
4 1000x160x 16 Bar 4
5 1000 x 180 x 18 Bar 5

The 3D geometry of Bar 1 was created using ANSYS Design
Modeler as shown in Figure 2. The Mechanical APDL solver
was used for the modal analysis of the bars. The mesh was
generated with an element size of 10 mm as shown in Figure 3.
A simply supported boundary condition was applied in which
the lower edge of one end is fixed and the lower edge of another
end is allowed to move along the x-axis and restricted in the
y-axis and z-axis to the geometry as shown in Figure 4. The
process was repeated for Bar 2, Bar 3, Bar 4 and Bar 5.

PN

Figure 2: Bar 1: 3D Geometry
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Figure 3: Bar 1: Meshing
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Figure 4: Bar 1: Simply Supported Boundary Conditions
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The geometry, mesh and boundary conditions were
completed and thirty modes were extracted. To verify the
accuracy of the result, the participation factor summary was
studied. The participation factor summary showed the ratio of
effective mass to total mass of 0.99777 along the Y axis
(transverse direction). The value close to 1 means that the
significant modes have been extracted. The first three modes
of transverse vibration obtained using ANSYS are shown in
Figure 5, Figure 6 and Figure 7.
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Figure 5: Mode 1: Transverse Vibration Bar 1
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Figure 6: Mode 2: Transverse Vibration of Bar 1
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Figure 7: Mode 3: Transverse Vibration Bar 1

The analytical result of various bars with different
cross-sections for the first three modes is listed in Table 3
based on Equation 7.

Table 3: Natural Frequency of First Three Modes in Hz:
Analytical

SN | Notation | Model | Mode2 | Mode3
1 Bar 1 228.88 915.52 2059.93
2 Bar 2 274.66 1098.63 | 2471.91
3 Bar 3 320.43 1281.73 | 2883.90
4 Bar 4 366.21 1464.84 | 3295.88
5 Bar 5 411.99 1647.94 | 3707.87

The numerical result of various bars with different
cross-sections for the first three modes is listed in Table 4 via
ANSYS.

The percentage deviation between analytical and numerical
results for the first three modes is listed in Table 5.

Table 4: Natural Frequency of First Three Modes
in Hz: ANSYS

SN | Notation | Model | Mode2 | Mode3
1 Bar1 224.88 856.95 1798.70
2 Bar 2 267.30 979.13 2044.50
3 Bar 3 307.66 1150.40 | 2239.20
4 Bar 4 345.43 1256.10 | 2381.20
5 Bar 5 380.17 1344.30 | 2472.20

Table 5: Natural Frequency of First Three Modes
in Hz: Analytical vs ANSYS

SN | Notation | Model | Mode2 | Mode 3
1 Bar 1 1.70% 6.40% 12.70%
2 Bar 2 2.70% 10.90% 17.30%
3 Bar 3 4.0% 10.20% 22.40%
4 Bar 4 5.70% 14.30% 27.80%
5 Bar 5 7.0% 18.40% 33.30%

5. Harmonic Analysis

The natural frequencies obtained from modal analysis were
used to carry out the harmonic analysis with the mode
superposition principle (MSUP). The harmonic force was
calculated from 30 mm clear spacing with differential heads
ranging from 1 m to 6 m. The process was repeated for the
clear spacing of 50 mm, 80 mm, and 100 mm. The calculated
harmonic force is listed in Table 6.

Table 6: Harmonic Force (V) for different clear spacing and
differential heads

Differential 30 mm 50 mm 80 mm 100 mm
Head (m)

1 294.19 490.32 784.51 980.64
2 588.38 980.64 1569.02 1961.28
3 882.57 1470.96 | 2353.53 | 2941.91
4 1176.77 | 1961.28 | 3138.04 | 3922.55
5 1470.96 | 2451.60 | 3922.55 | 4903.19
6 1765.15 | 2941.91 | 4707.06 | 5883.83
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The calculated vortex shedding frequency for 0.75 m/s, 1.5
m/s and 3.0 m/sis listed in table 7. The geometry, mesh and
boundary conditions from the modal analysis were kept the
same. However, the additional boundary condition (harmonic
force) was applied at the top edge which lies at the mid-span
of the bar and is shown in Figure 8.

The frequency sweep was set from 0 Hz to 3000 Hz which
covers all the vortex shedding frequencies under study. After
the analysis, the frequency response showed that the resonant
frequency may occur in the periphery of the first modal
frequency and nowhere near the forcing frequencies. The bars
under study were found safe. However, variables such as
operating conditions under different loads, and obstruction in

trash rack bars might play a vital role in attaining resonance.

Therefore, considering the worst-case scenario, the resonant
frequency and phase angle were noted and maximum
equivalent stress was studied.

Table 7: Forcing Frequency for different Velocities in Hz

SN | Notation | 0.75m/s | 1.5m/s | 3.0 m/s
1 Bar1l 11.625 23.25 46.50
2 Bar 2 9.688 19.375 38.75
3 Bar 3 8.304 16.607 33.214
4 Bar 4 7.266 14.531 29.063
5 Bar 5 6.458 12.917 25.833

The failure stress and safety stress for Bars are listed in table 8
[4].

Table 8: Failure and Safe Stress in MPa

SN | Notation | Failure Stress | Safe Stress
1 Bar 1 173.625 114.593
2 Bar 2 195.938 129.319
3 Bar 3 211.875 139.838
4 Bar 4 223.828 147.727
5 Bar 5 233.125 153.863

C: Harmonic Response
Harmonic Response
Frequency: 0. Hz

[ Force: (Real) 294.19, (Imag) 0. N

Components: (Real) 0.,-294.19,0. N
Components: (Imag) 0.,0.,0. N

PN

Figure 8: Bar 1: Boundary Conditions
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The harmonic response analysis of Bar 1 showed that in the
first mode of transverse vibration, the resonance of Bar 1 may
occur at 224.79 Hz with a phase angle of 91.13°. The allowable
deflection and failure stress of Bar 1 were 2 mm and 173.625
MPa respectively.

Figure 9 and Figure 10 show that Bar 1 was safe for the clear
spacing of 30 mm up to 3 m, 50 mm and 80 mm up to 1 m of

the differential heads. Bar 1 failed at 100 mm clear spacing at
all differential heads.

14
137~ 30 mm clear spacing
121 -@- 50 mm clear spacing
i; —&— 80 mm clear spacing
—#&— 100 mm clear spacing
— = Allowable Deflection (2 mm)

Amplitude (mm)

IR )

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Harmonic Force (N)

Figure 9: Bar 1: Peak Amplitude due to Harmonic Force in
First Mode
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Figure 10: Bar 1: Maximum Equivalent Stress due to
Harmonic Force in First Mode

The harmonic response analysis of Bar 2 showed that in the
first mode of transverse vibration, the resonance of Bar 2 may
occur at 267.20 Hz with a phase angle of 91.13°. The allowable
deflection and failure stress of Bar 2 were 2 mm and 195.938
MPa respectively.

Figure 11 and Figure 12 show that Bar 2 was safe for the clear
spacing of 30 mm up to 5 m of the differential head, the clear
spacing of 50 mm up to 3 m differential head, and the clear
spacing of 80 mm up to 2 m differential head and 100 mm
with 1 m differential head.
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Figure 11: Bar 2: Peak Amplitude due to Harmonic Force in
First Mode
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Figure 12: Bar 2: Maximum Equivalent Stress due to
Harmonic Force in First Mode

The harmonic response analysis of Bar 3 showed that in the
first mode of transverse vibration, the resonance in Bar 3 may
occur at 307.53 Hz with a phase angle of 91.13°. The allowable
deflection and failure stress of Bar 3 were 2 mm and 211.875
MPa respectively.

Figure 13 and Figure 14 show that Bar 3 was safe for the clear
spacings of 30 mm and 50 mm up to 6 m of the differential
head, and the clear spacing of 80 mm and 100 mm up to 3 m
differential heads.
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Figure 13: Bar 3: Peak Amplitude due to Harmonic Force in
First Mode
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Figure 14: Bar 3: Maximum Equivalent Stress due to
Harmonic Force in First Mode

The harmonic response analysis of Bar 4 showed that in the
first mode of transverse vibration, the resonance in Bar 4
occurred at 345.30 Hz with a phase angle of 91.14 °. The
allowable deflection and failure stress of Bar 4 were 2 mm and
223.828 M Pa respectively.

Figure 15 and Figure 16 show that Bar 4 was safe for the clear
spacing of 30 mm and 50 mm up to 6 m of the differential
head, the clear spacing of 80 mm up to 4 m differential head
and the clear spacing of 100 mm up to 3 m differential head.
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Figure 15: Bar 4: Peak Amplitude due to Harmonic Force in
First Mode
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Figure 16: Bar 4: Maximum Equivalent Stress due to
Harmonic Force in First Mode

The harmonic response analysis of Bar 5 showed that in the
first mode of transverse vibration, the resonance in Bar 5
occurred at 380.02 Hz with a phase angle of 91.14 °. The
allowable deflection and failure stress of Bar 5 were 2 mm and
233.125 M Pa respectively.

Figure 17 and Figure 18 show that Bar 5 was safe for the clear
spacing of 30 mm and 50 mm up to 6 m of the differential
head, the clear spacing of 80 mm up to 5 m differential head,
and the clear spacing of 100 mm up to 4 m differential head.
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= = Allowable Deflection ( 2 mm)
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Figure 17: Bar 5: Peak Amplitude due to Harmonic Force in
First Mode
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Figure 18: Bar 5: Maximum Equivalent Stress due to
Harmonic Force in First Mode

6. Conclusion

In summary, the harmonic analysis of various bars with
different cross-sections, clear spacing, and harmonic forces

subjected to the simply supported model have been studied.

The modal analysis showed the first mode of transverse

vibration matches closely with the analytical result.

Furthermore, the forcing frequencies being well below the
natural frequencies might not cause the resonance but given
the wide range of operating loads and obstruction in trash
racks might. Finally, the study clearly showed that there is an
almost linear relationship between harmonic force with
amplitude and equivalent stress. The findings of this study
can be applied during the preliminary design of trash racks
related to vibration in terms of resonance, amplitude and
equivalent stress. The future works could be an extended
version where the whole trash rack system with water, the
effect of damping and others can be incorporated.
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