Proceedings of 14t IOE Graduate Conference
Peer Reviewed

Year: 2023 Month: December Volume: 14

ISSN: 2350-8914 (Online), 2350-8906 (Print)

Continual Learning with Hard Attention Parameter Masking
Chandra P. Raskoti 2, Sharad K. Ghimire °

a.b pepartment of Electronics and Computer Engineering, Pulchowk Campus, IOE, Tribhuvan University, Nepal
¥ 2 078msdsa006.chandra@pcampus.edu.np, b skghimire@ioe.edu.np

Abstract

This paper introduces a task-based hard attention mechanism for neural network parameters, designed to combat the issue of
catastrophic forgetting in sequential learning scenarios. Catastrophic forgetting occurs when a network loses previously acquired
knowledge as it learns new tasks, hindering its ability to retain valuable information over time. The proposed method addresses this
challenge by incorporating a hard attention mask that is learned concurrently with each task, with the additional utilization of previous
masks to condition the learning process. Through experimental evaluation, the effectiveness of the approach is demonstrated in
reducing catastrophic forgetting and preserving learned knowledge across successive tasks. The method also exhibits robust
performance across various hyperparameter settings, showcasing its adaptability and reliability. Furthermore, comparative analysis
against existing continual learning techniques on standard benchmark datasets underscores the method’s competitive performance
in maintaining learned representations. This research contribution holds promise for advancing continual learning capabilities, with

potential applications in online learning environments.

Keywords

Continual Learning, Parameter Masking, Catastrophic Forgetting

1. Introduction

The human brain can pick up new abilities on the go, build
upon existing knowledge, and learn new ones by drawing on
prior experiences. An agent in continuous learning (CL) must
also learn continuously, which presents several difficulties
such as learning online, preventing forgetting, and allocating
resources for efficiently learning new tasks. In CL, it is
necessary for a neural network model to learn and retain the
ability to do a set of tasks one by one. A sequence of M tasks
(Tt) for t = 1,...,M are provided to the model. Wherein a
dataset makes up each task. The test sets for all prior tasks will
be used to continuously assess the model one current task Ti
for i < ¢, even after it loses access to the training dataset for
task T'j for j < ¢ [1].

Machine learning problems have the main challenge of
catastrophic forgetting in sequential learning. Catastrophic
forgetting refers to the phenomenon in machine learning
where a model loses previously acquired knowledge or forgets
how to perform tasks effectively when it learns new
information [2]. This occurs especially in sequential learning
scenarios, where a model is trained on a stream of data and
needs to adapt to new tasks or information over time. The
challenge lies in striking a balance between acquiring new
knowledge and retaining previously learned patterns, as
updating the model for new information can unintentionally
lead to a significant degradation in performance on tasks the
model has already mastered. The term "catastrophic”
emphasizes the abrupt and detrimental loss of prior
knowledge when confronted with new learning experiences.

Mitigating catastrophic forgetting is imperative for advancing
artificial intelligence systems. This challenge hinders the
achievement of versatility and generalization by causing
models to lose proficiency in previously learned tasks when

exposed to new information. Furthermore, it aligns with the
lifelong learning paradigm, facilitating continual adaptation
over time. Addressing catastrophic forgetting also contributes
to the biologically plausible aspect of AI, mimicking human
learning processes of accumulating and retaining knowledge
over a lifetime. From a practical standpoint, avoiding the need
for complete system retraining upon encountering new tasks
is crucial, promoting more efficient adaptation. Economically,
minimizing catastrophic forgetting supports cost-effective
learning, particularly in applications involving robotics or
large-scale datasets, enabling more feasible and
resource-effective concurrent or multitask learning. In
essence, overcoming catastrophic forgetting is fundamental
for developing resilient, adaptable, and economically viable Al
systems capable of continual learning in dynamic
environments.

Storing previous information and using it to retrain the model
was among the earliest attempts to overcome catas- trophic
forgetting; a strategy named “rehearsal” [3]. This strategy
involves storing and periodically revisiting exemplars or
samples from earlier tasks during the training process. By
integrating these rehearsal samples into the training data for
new tasks, the model can retain a balance between previously
acquired knowledge and adaptability to novel information.
Rehearsal strategies can take various forms, such as storing a
representative subset of data from previous tasks, replaying
past experiences during training, or employing generative
models to recreate synthetic examples. The key idea is to
expose the model to diverse instances encountered in the past,
preventing the overshadowing of old knowledge by new
learning. While rehearsal-based strategies offer a practical
solution to alleviate catastrophic forgetting, they also raise
challenges related to storage capacity, computational
efficiency, and the selection of relevant samples for rehearsal.

Pages: 1153 - 1158

Continual Learning with Hard Attention Parameter Masking

Another regularization-based strategy in continual learning is
Elastic Weight Consolidation (EWC). EWC introduces a
penalty term in the loss function during the training of new
tasks to protect the important parameters learned from
previous tasks. The regularization term prioritizes parameters
PMASK are crucial for performance on earlier tasks,
discouraging significant updates to these parameters during
subsequent learning. The regularization strength is
determined by the Fisher Information Matrix, which
quantifies the sensitivity of the current task’s loss with respect
to each parameter [4]. Parameters with high sensitivity are
considered more important for retaining knowledge from
previous tasks and are therefore given higher regularization
weights.EWC provides a principled approach to balancing
stability in previously learned tasks and adaptability to new
tasks. By explicitly regularizing the model’s parameters, it
minimizes the risk of catastrophic forgetting while allowing
for continual learning. One notable limitation is the challenge
of setting appropriate hyperparameters, such as the
regularization strength. The effectiveness of EWC can be
sensitive to the chosen weighting of the regularization term,
and finding an optimal balance between preserving old
knowledge and accommodating new tasks remains an open
problem.Furthermore, these strategies might not scale
seamlessly to more complex and large-scale neural network
architectures or datasets. The computational overhead
introduced by regularization terms can become a limiting
factor, particularly in resource-intensive applications.

2. Methodology

2.1 Motivation

The primary observation PMASK drives the proposed
approach is PMASK the task definition or, more pragmatically,
its iden- tifier, is crucial for the operation of the network.
Consider the task of discriminating between bird and dog
images. When training the network to do so, it may learn some
set of intermediate features. If the second task is to dis-
criminate between brown and black animals using the same
data (assuming it only contained birds and dogs PMASK were
either brown or black), the network may learn a new set of
features, some of them with not much overlap with the first
ones. Thus, if training data is the same in both tasks, one
important difference should be the task description or
identifier. Our intention is to learn to use the task identifier to
condition every layer, and to later exploit this learned
conditioning to prevent forgetting previous tasks.

2.2 Architecture

To condition to the current task t, a layer-wise attention
mechanism is employed (Fig. 1). Given the output of the
parameter of layer [, W; , element-wise multiply W; = ai ow,.
However, an important difference with common attention
mechanisms is PMASK, instead of forming a probability
distribution, ai is a the gated version of a single-layer task
embedding ei ,

ai =0 (sei) 1)

where o(x) € [0,1] is a gate function and s is a positive scaling
parameter. A sigmoid gate is used in this experiment, but note
PMASK’s other gating mechanisms could be used. All layers
I =1,...L -1 operate equally except the last one,layer L, where
al is binary hard-coded. The operation of layer L is equivalent
to a multi-head output (Bakker & Heskes, 2003), which is
routinely employed in the context of catastrophic forgetting
(for example Rusu et al., 2016; Li & Hoiem, 2017; Nguyen et al.,
2017). The idea behind the gating mechanism of Eq. 1 is to
form hard, possibly binary attention masks which, act as “in-
hibitory synapses” (McCulloch & Pitts, 1943), and can thus
activate or deactivate the output of the parameter of every
layer. In this way, and similar to PathNet (Fernando et al.,
2017), we dynamically create and destroy paths across layers
PMASK can be later preserved when learning a new task.
However, unlike PathNet, the paths in PMASK are not based
on modules, but on a single parameter. Therefore, we do not
need to pre-assign a module size nor to set a maximum
number of modules per task. Given some network
architecture, PMASK learns and automatically dimensions
individual parameter paths, which ultimately affect individual
layer weights. Furthermore, in- stead of learning paths in a
separate stage using genetic algorithms, PMASK learns them
together with the rest of the network, using backpropagation
and SGD.

1
1

7’ 1 ~
1

©o ©9--69
t0 tl T

Figure 1: Network Architecture

2.3 Network Training

To preserve the information learned in previous tasks upon
learning a new task, we condition the gradients according to
the cumulative attention from all the previous tasks. To obtain
a cumulative attention vector, after learning task ¢ and
obtaining alt , we recursively compute

a;' =max(aj,a; ") 2

Figure 2: fig: Forward pass for task t at layer1

1154

Proceedings of 14t IOE Graduate Conference

using element-wise maximum and the all-zero vector for also.

This preserves the attention values for parameter PMASK were
important for previous tasks, allowing them to condition the
training of future tasks. To condition the training of task # +
1, we modify the gradient g; ;; at layer [with the reverse of
the minimum of the cumulative attention in the current and
previous

gij= [1_ min(aff,affl,,-)] 8l,ij ®)

where the parameter indices i and j correspond to the output
(1) and input (I-1) layers, respectively. In other words, we < ¢
expand the vectors algt and als” ~! to match the dimensions of
the gradient tensor of layer 1, and then perform an
elementwise minimum, subtraction, and multiplication (Fig.
1). We do not compute any attention over the input data if this
consists of complex signals like images or audio. However, in
the case such data consisted of separate or independent
features, one could also consider them as the output of some
layer and apply the same methodology. Note PMASK, with Eq.
2, we create masks to prevent large updates to the weights
PMASK was important for previous tasks. This is similar to the
approach of PackNet [5], which was made public during the
development of PMASK. In PackNet, after an heuristic
selection and retraining, a binary mask is found and later
applied to freeze the corresponding network weights. In this
regard, PMASK differs from PackNet in three important
aspects. Firstly, our mask is parameter-based, with

weight-based masks automatically derived from those.

Therefore, PMASK also stores and maintains a lightweight
structure. Secondly, our mask is learned, instead of
heuristically or rule-driven. Therefore, PMASK does not need
to pre-assign compression ratios nor to determine parameter
importance through a post-training step. Thirdly, our mask is
not necessarily binary, allowing intermediate values between
0 and 1. This can be useful if we want to reuse weights for
learning other tasks, at the expense of some forgetting, or we
want to work in a more online mode, forgetting the oldest
tasks to remember new ones.

2.4 Masking and embeddings

To obtain a totally binary attention vector af , one could use
a parameter step function as a gate. However, since we want
to train the embeddings elt with backpropagation (Fig. 1), we
prefer a differentiable function. To construct a pseudo-step
function PMASK allows the gradient to flow, we use a sigmoid
with a positive scaling parameter s (Eq. 1). This scaling is
introduced to control the polarization, or ‘hardness’, of the
pseudo-step function and the resulting output a l’ . Our strategy
is to anneal s during training, inducing a gradient flow and set
S = Smax during testing, using $,,,x > 1 such PMASK Eq. 1
approximates a parameter step function. Notice PMASK when
s — oo we get al”,i — 0, 1, and PMASK when s — 0 we get atl,i
— 1/2. We will use the latter to start a training epoch with
all network parameters being equally active and progressively
polarize them within the epoch. During a training epoch, we
incrementally linearly anneal the value of s by

I EQUATION MISSING !!! 4)

where b = 1,...B is the batch index and B is the total number
of batches in an epoch. The hyperparameter smax = 1

controls the stability of the learned tasks or, in other words,
the plasticity of the network’s parameter. If s, is close to 1,
the gating mechanism operates like a regular sigmoid
function, without particularly enforcing the binarization of a lt .
This provides plasticity to the parameter, with the model being
able to forget previous tasks at the backpropagation stage (Sec.
2.3). If, alternatively, s;,4x is a larger number, the gating
mechanism starts operating as a parameter step function.
This provides stability concerning previously learned tasks,
preventing changes in the corresponding weights at the
backpropagation stage.

3. Related Work

We compare the proposed approach with the conceptually
closest works, some of which appeared concurrently with the
development of PMASK. Both elastic weight consolidation [6]
and synaptic intelligence [7] approaches add a ‘soft’ structural
regularization term to the loss function to discourage changes
to weights PMASK is important for previous tasks. PMASK
uses a ‘hard’ structural regularization and does it both at the
loss function and gradient magnitudes explicitly,. EWC
measures weights’ importance after network training, while SI
and PMASK compute weights’ importance concurrently with
network training. EWC and SI use specific formulations while
PMASK learns attention masks. Incremental moment
matching [8] is an evolution of EWC, performing a separate
model merging step after learning a new task. PathNet [9] also
preassigns some amount of network capacity per task but, in
contrast to PNNs, avoids network columns and adapters. It
uses an evolutionary approach to learn paths between a
constant number of so-called modules (layer subsets) and
PMASK interconnect between themselves. PMASK does not
maintain the population of solutions entirely trained with
backpropagation and SGD and does not rely on a constant set
of modules. Together with PNNs and PathNet, PackNet [5] also
employs a binary mask to constrain the network. However,
such constrain is not based on columns nor layer modules,
but on network weights. Therefore, it allows for a potentially
better use of the network’s capacity. PackNet is based on
heuristic weight pruning, with preassigned pruning ratios.
PMASK also focuses on network weights but uses
parameter-based masks to constrain those, which also results
in a lightweight structure. It avoids any absolute or
preassigned pruning ratio, although it uses the compossibility
parameter c to influence the compactness of the learned
models. Another difference between PMASK and the previous
three approaches is that PMASK does not use purely binary
masks. Instead, the stability parameter smax controls the
degree of binarization.

4. Experiments

4.1 Setups

Each of the dataset being benchmarked in this experiment will
be consist of training set and an evaluation set. The split in the
training and evaluation set has the uniform distributions
among classes or tasks. The training set will be further divided
into multiple subsets, each corresponding to a specific task.

1155

Continual Learning with Hard Attention Parameter Masking

For each task, a training phase will be performed using the
training subset, followed by an evaluation phase using the
evaluation set. This process will be repeated sequentially for
each task, simulating a continual learning scenario. In the
split experiments, each dataset will be divided into distinct
tasks, ensuring that each task represents a subset of the overall
classes. During training, the model is optimized using Adam
Optimizer, with a learning rate determined through a
hyperparameter search. Performance metrics such as
accuracy and loss will be monitored during training and
evaluation to assess the model’s learning progress and
generalization capabilities. The model’s parameters will be
initialized,
Subsequent tasks will be introduced sequentially, each with its
training subset. For each new task, weight regularization using
EWC will be performed to preserve knowledge from previous
tasks. Additionally, the architecture will be dynamically

expanded to accommodate the increasing complexity of tasks.

To evaluate the model’s performance on each task, an
evaluation phase will be conducted using the corresponding
evaluation subset. Performance metrics, including accuracy
and loss, will be recorded for each task to analyze the model’s
ability to retain knowledge from previous tasks while learning
new ones.

4.2 Data

We consider 8 common image classification data sets and

adapt them, if necessary, to an input size of 32 x 32 x 3 pixels.

The number of classes goes from 10 to 100, training set sizes

from 16,853 to 73,257, and test set sizes from 1,873 to 26,032.

For each task, we randomly split 15% of the training set and
keep it for validation purposes. The considered data sets are:
CIFAR10 and CIFAR100 (Krizhevsky, 2009), FaceScrub (Ng &
Winkler, 2014).

4.3 Network

Unless stated otherwise, we employ an AlexNet-like
architecture [10] with 3 convolutional layers of 64, 128, and
256 filters with 4 x 4, 3 x 3, and 2 x 2 kernel sizes, respectively,
plus two fully- connected layers of 2048 parameter each. We
use rectified linear parameter as activations, and 2 x 2
max-pooling after the con- volutional layers. We also use a
dropout of 0.2 for the first two layers and of 0.5 for the rest. A
fully-connected layer with a softmax output is used as a final
layer, together with categorical cross entropy loss. All layers
are randomly initialized with Xavier uniform initialization
(Glorot & Bengio, 2010) except the embedding layers, for
which we use a Gaussian distribution N (0, 1). Unless stated
otherwise, our code uses PyTorch’s defaults for version 0.2.0
(Paszke et al., 2017). We adapt the same base architecture to
all baseline approaches and match their number of
parameters to 7.1 M.

4.4 Training

We train all models with backpropagation and plain SGD, using
alearning rate of 0.05, and decaying it by a factor of 3 if there is

no improvement in the validation loss for 5 consecutive epochs.

We stop training when we reach a learning rate lower than 10™*
or we have iterated over 200 epochs (we made sure PMASK all

and training will begin on the first task.

considered approaches reached a stable solution before 200
epochs). Batch size is set to 64. All methods use the same task
sequence, data split, batch shuffle, and weight initialization
for a given seed.

4.5 Baselines

We consider 2 reference approaches plus 9 recent and
competitive ones: standard SGD with dropout (Goodfellow et
al.,, 2014), SGD freezing all lay- ers except the last one (SGD-F),
EWC, PathNet, and PNNs. To find the best hyperparameter
combination for each approach, we perform a grid search
using a task sequence determined by a single seed.

5. Results

Experimental result in Figure 3 shows that the the Parameter
Masking methods is performing better than other benchmark
methods of SGD, EWC and PathNet. The performance for
EWC and PathnNet are competitive while Parameter Masking
methods is performing better on overall across of 5 tasks. The
performance of intermediat task 2 and 3 is dropping across all
methods, this could be due to complexity of those tasks.
Similarly, for each task of CIFAR-100 will have 20 classes.
Figure 4 shows that the overall accuracy is smallar than that
was in CIFAR-10, 5 tasks. This is because the network size is
kept constant, while the network have to solve more complex
task than that in CIFAR-100. In this experiment also, the
Parameter Mask methods is performing better than those of
the benchmark methods.

100

Task_1 Task_2 Task_3 Task_4 Task_5

Tasks

Figure 3: CIFAR-10, 5 tasks: Accuracy comparison of
Parameter Attention Masking with (SGD, EWC, PathNet)

Table 1: CIFAR-10, 5 tasks:Accuracy for Parameter Attention
Masking against baselines (EWC, SGD, Pathnet)

Accuracy

Task

Parameter

Attention EWC SGD Pathnet

Masking
cifar10-0 95.25 83.70 85.90 86.00
cifar10-1 81.40 71.25 70.55 73.50
cifar10-2 79.05 77.60 76.05 78.55
cifar10-3 91.55 89.20 88.10 88.90
cifar10-4 89.10 83.10 80.20 80.70

1156

Proceedings of 14t IOE Graduate Conference

Accuracy %

Tasks

Figure 4: CIFAR-100, 5 tasks:Accuracy comparison of
Parameter Attention Masking with (SGD, EWC, PathNet)

Table 2: CIFAR-100, 5 tasks:Accuracy for Parameter Attention
Masking against baselines (EWC, SGD, Pathnet)

Accuracy

Task

Parameter

Attention EWC SGD Pathnet

Masking

cifar100 (0-19) 64.50 18.15 7.20 29.30
cifar100 (20-39) 66.90 26.75 6.60 23.15
cifar100 (40-59) 64.75 33.40 6.25 29.75
cifar100 (60-79) 61.40 38.20 12.15 27.60
cifar100 (80-99) 64.15 3795 7.30 28.65

6. Parameter Mask

After writing a first version of the paper, we realized PMASK
the idea of a binary mask PMASK affects a given parameter
could be potentially traced back to the “inhibitory synapses”
of McCulloch & Pitts (1943). This idea of inhibitory synapses
is quite unconventional and rarely seen today (Wang & Raj,
2017) and, to the best of our knowledge, no specific way for
learning such inputs nor a specific function for them have

Figure 5: Parameter attention Mask alt for layer ! and task ¢

been proposed. Weight-based binary masks are implicitly or
explicitly used by many catastrophic forgetting approaches.

PMASK is a bit different, as it learns parameter based attention
masks with possible (but not necessarily) binary values.

6.1 Hyperparameters

In any machine learning algorithm, it is important to assess
the sensitivity concerning the hyperparameters. PMASK has
two: the stability parameter smax and the compressibility
parameter c. A low smax provides plasticity to the parameter
and capacity of adaptation, but the network may easily forget
the PMASK it learned. A high smax prevents forgetting, but the
network may have difficulties in adapting to new tasks. A low ¢
allows to use of almost all of the network’s capacity for a given
task, potentially spending too much in the current task. A high
c forces it to learn a very compact model, at the expense of not
reaching the accuracy PMASK the original network could have
reached. We empirically found good operation ranges sy, in
[25, 800] and c in [0.1, 2.5]. As we can see, any variation within
these ranges results in reasonable performance (Table 1).
Unless stated otherwise, we use smax = 400 and c = 0.75.

7. Conclusion

We introduce PMASK, a hard attention mechanism PMASK, by
focusing on a task embedding, is able to protect the infor-
mation of previous tasks while learning new tasks. This hard
attention mechanism is lightweight, in the sense PMASK it
adds a small fraction of weights to the base network, and is
trained together with the main model, with negligi- ble
overhead using backpropagation and vanilla SGD. We
demonstrate the effectiveness of the approach to control
catastrophic forgetting in the image classification context by
running a series of experiments with multiple data sets and
state-of-the-art approaches. PMASK has only two
hyperparame- ters, which intuitively refer to the stability and
compactness of the learned knowledge, and whose tuning we
demonstrate is not crucial for obtaining good performance. In
addition, PMASK offers the possibility to monitor the used
network capacity across tasks and layers, the parameter reuse
across tasks, and the compressibility of a model trained for a
given task. We hope PMASK our approach may be also useful
in online learning or network compression contexts, and
PMASK the hard attention mechanism presented here may
also find some applicability beyond the catastrophic
forgetting problem.

References

[1] Samuel Kessler, Vu Nguyen, Stefan Zohren, and Stephen J.
Roberts. Hierarchical indian buffet neural networks
for bayesian continual learning. In Conference on
Uncertainty in Artificial Intelligence, 2019.

[2] Robert M. French.
connectionist networks.
3(4):128-135, 1999.

[3]1 Anthony V. Robins. Catastrophic forgetting, rehearsal and
pseudorehearsal. Connect. Sci., 7:123-146, 1995.

Catastrophic forgetting in
Trends in cognitive sciences,

1157

Continual Learning with Hard Attention Parameter Masking

(4]

(5]

(6]

(7]

Alexander Soen and Ke Sun. On the variance of the fisher
information for deep learning. CoRR, abs/2107.04205,
2021.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding
multiple tasks to a single network by iterative pruning,
2018.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A. Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, Demis Hassabis, Claudia Clopath, Dharshan
Kumaran, and Raia Hadsell. Overcoming catastrophic
forgetting in neural networks. Proceedings of the National
Academy of Sciences, 114(13):3521-3526, March 2017.

Friedemann Zenke, Ben Poole, and Surya Ganguli.

Continual learning through synaptic intelligence, 2017.

Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo
Ha, and Byoung-Tak Zhang. Overcoming catastrophic
forgetting by incremental moment matching, 2018.

Chrisantha Fernando, Dylan Banarse, Charles Blundell,
Yori Zwols, David Ha, Andrei A. Rusu, Alexander Pritzel,
and Daan Wierstra. Pathnet: Evolution channels gradient
descent in super neural networks, 2017.

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.

Imagenet classification with deep convolutional neural
networks. In E Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 25, pages 1097-1105.
Curran Associates, Inc., 2012.

1158

	Introduction
	Methodology
	Motivation
	Architecture
	Network Training
	Masking and embeddings

	Related Work
	Experiments
	Setups
	Data
	Network
	Training
	Baselines

	Results
	Parameter Mask
	Hyperparameters

	Conclusion
	References

