
Proceedings of 14th IOE Graduate Conference
Peer Reviewed

Year: 2023 Month: December Volume: 14
ISSN: 2350-8914 (Online), 2350-8906 (Print)

Analyzing Cloud Traffic for Web Honeypot using Microservice-based
Architecture and XGBoost algorithm

Susmita Shrestha a, Subarna Shakya b, Anku Jaiswal c

a, b, c Department of Electronics and Computer Engineering, Pulchowk Campus, IOE, Tribhuwan University, Nepal
� a 078mscsk019.susmita@pcampus.edu.np, b drss@ioe.edu.np, c anku.jaiswal@pcampus.edu.np

Abstract
The intricacy of web applications and the cloud computing industry’s exponential expansion have created new difficulties for security.
Web honeypots have become effective resources for identifying and examining harmful activity aimed at web applications. This
paper suggests a novel approach for designing and analyzing web honeypots that makes use of a microservices architecture
and machine learning methods. This proposed system leverages microservices-based architecture to enhance the scalability,
flexibility, and modularity of the web honeypot infrastructure. By breaking down the traditional monolithic architecture into smaller,
independent services, proposed method achieves better resource utilization and the ability to scale components individually based
on the traffic load. This enables to effectively handle the high volume of cloud traffic, reducing latency and enhancing overall system
performance. The study employs containerization methodologies with docker and kubernetes to deploy microservices in the cloud.
Additionally, this research explores XGBoost machine learning algorithm into the honeypot system to analyze incoming traffic.
Proposed system equips the honeypot with the ability to precisely recognize and categorize numerous sorts of attacks, including as
SQL injection, cross-site scripting, and brute-force efforts by training the algorithms on large amounts of datasets of both legitimate
and malicious traffic patterns.

Keywords
brute-force efforts, cloud computing, cross-site scripting, docker, kubernetes, machine learning, microservices architecture, SQL
injection, web application, web honeypot and XGBoost.

1. Introduction

The rapid growth of cloud computing has caused a change in
how organizations deploy and handle their web applications
in recent years. With the popularity of cloud-based services
increasing, cybersecurity vulnerabilities affecting cloud
infrastructure and applications have also increased.
Enterprises must have effective security systems that can
recognize and evaluate dangerous activities in real-time in
order to lower these risks.

The main idea behind microservices is a modular design that
divides large applications into loosely tied autonomous
components. A significantly greater number of independent
components and the communication pathways connecting
them make up the modular design of the microservices
architecture. A system’s attack surface grows as there are more
components since there are more moving parts overall. As a
result, protecting these systems becomes significantly more
challenging and important. As technology advances,
cyber-attacks are also evolving to exploit vulnerabilities and
gain access to users’ confidential information. Hacking
attempts including phishing, crypto trojans, and cyber
scamming are frequent and dangerous.

Using web honeypots, which are decoy systems designed to
record cloud activity indicative of potential cyber-attacks. The
traditional method for deploying honeypots was on physical
or virtual computers, but with the introduction of machine
learning techniques and microservices architecture, a new
method has evolved. The research paper suggests use of the
modular architectural design of microservices to build a

distributed honeypot infrastructure in a cloud setting. The
honeypot system becomes extremely scalable, fault-tolerant,
and adaptive to handle enormous amounts of incoming traffic
by utilizing microservices. Furthermore, the system employs
machine learning techniques to identify and analyze the
obtained traffic, distinguishing between legitimate and lethal
user activities.

1.1 Cloud Computing

Cloud computing has emerged as a transformative technology
that revolutionizes the way organizations deploy, manage, and
utilize their IT resources. It provides an adaptable and
expandable architecture for providing computer services
through the internet, allowing enterprises to instantly access a
huge variety of resources and applications. Cloud computing
has fundamentally hindered the conventional paradigm of
developing and maintaining IT infrastructure. Cloud
computing allows for remote infrastructure to be applied
based on needs.

1.2 Microservice-based Web Honeypot

A microservice-based web honeypot combines the principles
of microservices architecture with the capabilities of web
honeypots. Instead of using a monolithic approach, where the
entire honeypot is a single system, it leverages the benefits of
microservices to create a more flexible, scalable, and resilient
infrastructure for hosting and managing multiple honeypot
services. In this context, each microservice within the
honeypot ecosystem represents a specific component or

Pages: 1127 – 1135



Analyzing Cloud Traffic for Web Honeypot using Microservice-based Architecture and XGBoost algorithm

Figure 1: Cloud Computing Overview [1]

functionality of the overall honeypot system. For example,
there might be microservices for authenticating users,
capturing data, logging and monitoring activities. These
microservices can be independently deployed, scaled, and
updated, allowing security professionals to customize their
honeypot infrastructure according to their specific needs and
requirements

Figure 2: Microservice Overview

1.3 Machine Learning Algorithm

Extreme Gradient Boosting (XGBoost) is an advanced
implementation of the gradient boosting machine learning
technique. It is designed to optimize performance and speed
by utilizing parallel computing and incorporating
regularization techniques. XGBoost is particularly effective in
solving complex regression and classification problems and
has gained popularity for its outstanding performance in
various data science competitions and real-world applications.
It is an optimized implementation of the gradient boosting
framework, which combines multiple weak prediction models
i.e. decision trees to create a strong predictive model.

1.3.1 XGBoost Overview

Gradient Boosting framework aids to repeatedly construct an
ensemble of weak models and combine their predictions to
produce a stronger model. By progressively adding models that
predict the residual errors of the prior models, it minimizes a
given loss function. XGBoost uses regularization techniques to
avoid overfitting and improve generalization, handles missing
values, which eliminates the need for preprocessing processes,
and is highly applicable for parallel processing and scalability.

2. Literature Review

The development of container orchestration platforms like
Kubernetes (K8s) and microservices architecture has
completely transformed the industry by enhancing scalability,
flexibility, and deployment simplicity. Researchers are
investigating these areas to identify vulnerabilities, develop
best practices, and propose security solutions to mitigate
risks.

Software defined networking architecture based honeynet is
proposed a flexible and programmable network environment
along with enhanced control of the network by separating
the control plane from the data plane [2]. HoneyMix keeps a
map of all available services in the network and generates data
control rules in a centralized manner.

HoneyPLC presumably seeks to lure potential attackers and
trick them into engaging with it by successfully impersonating
actual devices, giving researchers or security experts a chance
to examine their tactics, purposes, and potential weaknesses.
Numerous commonly used reconnaissance programs,
including Nmap, Shodan’s Honeyscore, Siemens Step7
Manager, PLCinject, and PLCScan, have a high degree of
confidence in HoneyPLC as genuine devices. Network
scanning, device identification, vulnerability analysis[3].

The honeypot-as-a-service (HaaS) strategy aims to strike a
balance between the effectiveness of honeypots against
knowledgeable attackers and the economic considerations for
businesses. It combines the advantages of honeypots in
gathering valuable threat intelligence with the convenience
and cost-effectiveness of a managed service[4]. The use of
honeypots for intrusion detection and prevention has allowed
users to exchange files by submitting requests, which are then
examined depending on the credentials supplied to access the
files[5].

On the Kubernetes orchestration platform, a technology called
KubAnomaly offers security monitoring features for anomaly
detection. A container monitoring module for Kubernetes
is then developed, and neural network techniques are used
to generate classification models that improve the system’s
capacity to detect unusual activities such web service attacks
and common vulnerabilities and demonstrates attacks[6].

Adoption of cloud-native and microservices architectures
raises new security concerns and emphasizes the necessity for
specific security solutions like sandboxes. In this context, a
"cloud-native sandbox" is an isolated, controlled environment
where software or services may be used, tracked, and tested
without disrupting the live system. It enables the study of
potentially harmful actions and the discovery of holes or

1128



Proceedings of 14th IOE Graduate Conference

vulnerabilities inside the microservices ecosystem[7].

Several studies have been done which aims to explore the
research in the field of intrusion detection, with a focus on the
proposed method that emphasize the XGBoost algorithm. A
approach for assessing the various data qualities in a network,
such as precision, accuracy, and confusion matrix, is
introduced in the research. The NSL-KDD dataset is used with
XGBoost to learn more about data integrity, enhance the
predictive capacity of data, and lessen the amount of
hazardous data that is floating about in a network, creating a
secure environment for exchanging information [8].

Extreme Gradient Boosting (XGBoost) is the basic foundation
of the proposed approach, and the WOA (Whale Optimization
Algorithm) is used to determine the optimal parameters for
it[9].

Beyond behavioral analysis in security, XCBoost has been used
in various domains. XGBoost has been used for prediction
tasks including energy consumption, interior comfort,
occupancy forecasting, or cost estimate in the early design
stages of office buildings. The XGBoost model can uncover
patterns and correlations between different design
parameters and performance measures by being trained on
past statistics or simulation results. In order to help architects
and engineers make well-informed decisions throughout the
design process, the trained model may then be used to
forecast the performance of novel design configurations[10].

Containers are small, separated environments made possible
by containerization technologies, such as Docker. The
consistent and portable execution environment that
containers offer for applications and services makes them
ideal for setting up and maintaining honeypot systems. By
utilizing the containerization capabilities of contemporary
systems, the researchers seek to construct a honeypot solution
that can be easily installed and run within networks or even
outside of private networks in real-world situations[11].

The study, Containerized cloud-based honeypot deception
for tracking attackers [12], provides a thorough overview of
the implementation of containerized honeypots; as a result,
they are transportable, resilient, and straightforward to deploy
and administer. The instrumented method was tracked and
produced a ton of data points from which it was possible to
draw important conclusions about the actions and intentions
of the malicious users.

The paper, A Cloud-Native Honeynet Automation and
Orchestration Framework [13], proposes simulating attacker
isolation on cloud-native systems with docker, integrating a
virtual honeypot OS (Cowrie) to capture logs, and then
utilizing threat modeling on the suggested architecture to
qualitatively assess and provide a general framework for its
implementation. It also addresses moving target defenses,
which involve continually changing the configuration of the
underlying system, making the honeynet implementation
more difficult to understand.

The effectiveness of XGBoost and Catboost: tree-based
classifiers in identifying the phishing websites has been
studied. In terms of accuracy, both classifiers performed
admirably. The outcome in particular demonstrates that
XGBoost outperforms Catboost. These classifiers were

examined using two datasets. K-fold validation and train-test
validation are both employed during the study to support the
result[14]. It is becoming common for fraudulent websites to
infect users’ devices. Users frequently browse these websites
without paying attention to the URL details, which results in
the theft of private data. Since attackers try to copy real URLs,
it might be difficult to identify them.

The groundwater quality, which is jeopardized by excessive
fuoride contamination, is also monitored using the ensemble
machine learning technique. Light gradient boosting
(LightGBM), random forest (RF), and extreme gradient
boosting (Xgboost) were also employed in comparison with
Hybrid Random Forest with a Linear Model for predicting
fuoride contamination in groundwater. The accuracy of the
xgboost model has been outstanding[15]. In contrast to the
AdaBoost method, LightGBM and XGBoost both estimate the
semantic textual similarity between the meaning of two texts
and produce marginally superior results although LightGBM
often performs somewhat better than XGBoost[16].

Boosting algorithms can be helpful in sectors like the food
industry, where handling consumer meal orders has emerged
as the key challenge. The proposed research uses gradient
boosting regression models like Gradient Boosting,
XGBoosting, LightGBM, CatBoost along with lasso, ridge,
Bayesian ridge regression, Support Vector Regression, decision
tree, and random forest to prevent inaccurate estimation of
the food orders and waste of both food and raw materials, as
well as ineffective employee management and decreased
business profit[17].

The research paper, HoneyKube: Designing and Deploying a
Microservices-based Web Honeypot[18], has explored
creating and implementing a Microservices-based Web
Honeypot for recording and analyzing network traffic, as well
as logging and monitoring activities. Here, researchers
introduce HoneyKube, a microservices-based web honeypot
system that is both efficient and scalable. By adopting this
approach, HoneyKube aims to provide accurate emulation of
web services, gather threat intelligence, and enhance the
understanding of web-based attacks and vulnerabilities.

3. Methodology

In order to construct a microservice based honeypot in a
cloud environment, the problem domain should be defined
and assessed at first. Following that, we take a two-step
approach: first, we create a real-world application using the
microservice architecture to authenticate users and gather
service requests from users, and then we utilize the XGBoost
algorithm to analyze and classify the stored request data.

3.1 Proposed System

3.2 XGBoost Algorithm

The detailed stepwise procedure for using the XGBoost
algorithm for classification is given as:

• Initial Prediction: The Probability For The Base Model is
set to P.

1129



Analyzing Cloud Traffic for Web Honeypot using Microservice-based Architecture and XGBoost algorithm

Figure 3: Block Diagram

• Similarity Score and Gain: It is given as:

Si mi l ar i t yScor e =
∑

Resi dual 2∑
[P ∗ (1−P )]+λ

Gai n = Le f tS s +Ri g htS s −RootS s

Where P is Probability.
lambda is the regularization parameter, which helps
prevent overfitting.

• Prune the Tree: The tree is pruned based on the
calculated gain and the selected gamma value.
If Gain - Gamma is greater than 0, Keep the tree.
If Gain - Gamma is less than 0, Prune the tree.

Out putV alue =
∑

Resi dual∑
[P ∗ (1−P )]+λ

• Predicted Value:

Pr edi cted V alue = Ini t i al pr edi ct i on+et a(lear ni ng r ate)∗out put

4. Experimental Setup

4.1 Hardware and Infrastructure

The experimental setup aimed to assess the performance,
scalability, and reliability of microservices orchestrated using
Kubernetes and Docker. The following hardware and
infrastructure components were utilized:

• Cluster Configuration: A cluster consisting of n nodes
was set up. These nodes were dedicated to running
Docker containers orchestrated by Kubernetes. The
cluster was created in order to simulate a real-world
cloud environment.

• Node Specifications: Each node in the cluster had two
CPUs and 400 mi of storage. The hardware was chosen
to reflect a cloud computing environment with dynamic
resource allocation.

• Networking: Nodes were interconnected with each other
over a local network created by Docker or the container
runtime.

4.2 Software Stack

The software stack for our experimental setup comprised the
following components:

• Operating System: All nodes ran a compatible Linux
distribution, specifically 22.04 version.

• Containerization: Docker version 24.0.5 was installed
on each node to create and manage containers for our
microservices. Docker images for individual
microservices were built according to predefined
Dockerfiles.

• Orchestration: Kubernetes (Client Version: v1.28.1,
Kustomize Version:
v5.0.4-0.20230601165947-6ce0bf390ce3, Server Version:
v1.27.4) was deployed on the cluster to orchestrate the
deployment, scaling, and management of microservices.
Kubernetes was configured to manage microservices
defined in Kubernetes manifests.

• Monitoring and Logging: We employed monitoring
tools Prometheus and Grafana for collecting data from
containers.

• Programming language: We designed and developed the
microservices in Python 3.11.5. We applied mysql (Ver
8.0.34-0ubuntu0.22.04.1) as the database system for user
authentication. MongoDB was also used to serve the
other services. To avoid request overflow, the message
broker Rabbitmq is utilized to send the request in queue.

4.3 Microservices Deployment

This research was focused on a set of microservices
representing a simplified video to mp3 converter application.
These microservices included but were not limited to:

• Auth Service

• User Service

• Validate Service

• Gateway Service

• Convertor Service

• Download Service

Each microservice was containerized using Docker and
encapsulated its dependencies, configurations, and runtime
environment.

4.4 Kubernetes Manifests

For each microservice, we defined Kubernetes manifests in
YAML format. These manifests included specifications for
Deployments, Services, ConfigMaps, and Resource Requests
and Limits.

1130



Proceedings of 14th IOE Graduate Conference

4.5 Experiment Execution

The experiments were designed to evaluate various aspects of
the orchestrated microservices, including storing and
analyzing data request pattern from user and potential gaps in
microservice architecture in a cloud context.

4.6 Data Collection and Analysis

Data collected during the experiment logs were recorded and
analyzed using XGBoost machine learning algorithm.

5. Result and Analysis

This research aims to examine attack patterns in
micro-service architectures by utilizing network-collected
datasets. The input characteristics of the datasets includes
source point details, destination point details, IP packets
detail, login details, type of intrusion in the cloud for
inspection of the micro-service application orchestrated in
kubernetes platform.

5.1 Data Preprocessing and Feature Analysis

The datasets including various types of intrusions are the
datapoints utilized to train the algorithm, as shown in figure 4.

Figure 4: Intrusion Types

In the data preprocessing and exploratory data analysis stages,
feature correlations have been examined. This analysis aids
in the decision-making process when selecting features, as
shown in figure 5.

5.2 Model Training and Analysis

In this research study, experiments were conducted to assess
the accuracy of the research model, with a comprehensive
examination of its performance across various samples. The
accuracy plot, shown in Figure below, depicts the model’s
performance on the dataset. While assessing the model, the
result of varying parameter values in the model is plotted to

Figure 5: Features Correlation

visualize the output in the form of accuracy. The accuracy plot
is determined by adjusting hyperparameter values such as
learning rate, depth of the tree in model, and sub-sample
datasets used to train the tree in the model.

(a) Accuracy at Learning rate 0.2, depth 3 and sub-sample 0.8

(b) Accuracy at Learning rate 0.2, depth 3 and sub-sample 1

(c) Accuracy at Learning rate 0.2, depth 5 and sub-sample 0.8

Figure 6: Accuracy at different learning rates, depth, and sub
samples

1131



Analyzing Cloud Traffic for Web Honeypot using Microservice-based Architecture and XGBoost algorithm

Figures 6a, 6b, 6c, 7a, 7b, 7c and 7d illustrate the varied
accuracy plots with varying values of the hyper parameters.
Figures 8a, 8b, 8c and 8d illustrate the varied loss plots with
varying values of the hyper parameters.

(a) Accuracy at Learning rate 0.2, depth 5 and sub-sample 1

(b) Accuracy at Learning rate 0.1, depth 3 and sub-sample 0.8

(c) Accuracy at Learning rate 0.1, depth 3 and sub-sample 1

(d) Accuracy at Learning rate 0.1, depth 1 and sub-sample 0.8

Figure 7: Accuracy at different learning rates, depth, and sub
samples

The accuracy plot provides valuable insights into the model’s
performance under different hyperparameter configurations.
Notably, as the depth of the tree increases, there is a
discernible trend towards overfitting, evidenced by a decrease
in performance. Conversely, when the tree depth is limited,
the model demonstrates robustness and generalizability.

Additionally, the sub-sample value appears to significantly
impact model performance during testing. A lower sub-sample
value corresponds to enhanced performance, indicating that

(a) Loss at Learning rate 0.1, depth 3 and sub-sample 0.8

(b) Loss at Learning rate 0.1, depth 5 and sub-sample 1

(c) Loss at Learning rate 0.2, depth 5 and sub-sample 1

(d) Loss at Learning rate 0.2, depth 5 and sub-sample 1

Figure 8: Loss at different learning rates, depth, and sub
samples

the model benefits from a more restrained sampling approach.

Examining the impact of learning rate on accuracy reveals
interesting dynamics. Specifically, learning rates of 0.1 and 0.2
introduce variability in accuracy, with nuanced fluctuations
observed. Notably, a learning rate of 0.1 appears to yield more
consistent and favorable results.

In summary, after careful analysis, optimal hyperparameter
settings for this model emerge. The model performs optimally
with a learning rate of 0.1, a tree depth of 1, and a sub-sample
value of 0.8. These configurations collectively contribute to a
well-balanced model that avoids overfitting, maintains
robustness, and exhibits superior performance in testing.

1132



Proceedings of 14th IOE Graduate Conference

5.3 Comparison of Model Performance with Intrusion
Type

The table 1 depicts the findings of a model’s performance as
measured by evaluation metrics. These metrics have
significance for determining a model’s efficacy in data
analysis, machine learning, and classification.

Table 1: Output Status for Xgboost

S.N. Evaluation Metrics Value
1 Accuracy 0.999378109
2 Precision 0.999344343
3 Recall 0.999378109
4 F1-score 0.99931787

Table 2 provides a thorough summary of a XGBoost model’s
performance when compared to various intrusion types. It
uses assessment metrics to show the effectiveness of the
model.

A graphical representation of confusion metrics associated
with an XGBoost model’s performance is shown in Figure 9.
Based on the model’s predictions for a given dataset, these
metrics are calculated.

The table 2 displays model performance across various
intrusion types as shown by various evaluation metrics. This
variation emphasizes the importance of intrusion in model
performance. It implies that the model’s effectiveness is
determined by the precise nature of the incursion being
addressed, revealing the intricacies of its predictive skills
across various circumstances. This variation could be due to
differences in dataset sizes for each intrusion type. Notably,
fluctuations in accuracy indicate a proclivity for overfitting
during the model’s training phase, which have impaired its
capacity to generalize effectively to different intrusion
circumstances. Although there appears to be minimal
overfitting in the training phase, the model works very
effectively on the analysis of network data.

Table 2: Output Status for Various Intrusion Types

S.N. Types of
Intrusion

precision recall f1-score support

0 back 1.00 1.00 1.00 4
1 buffer

overflow
1.00 0.43 0.60 7

2 guess
passwd

1.00 0.82 0.90 11

3 ipsweep 0.93 1.00 0.97 14
4 land 0.00 0.00 0.00 1
5 neptune 1.00 1.00 1.00 2081
6 normal 1.00 1.00 1.00 19456
7 pod 1.00 1.00 1.00 11
8 portsweep 1.00 0.89 0.94 9
9 satan 1.00 1.00 1.00 3
10 smurf 1.00 1.00 1.00 5674
11 teardrop 1.00 1.00 1.00 24
12 warezclient 1.00 0.85 0.92 41

We can observe diverse intrusion types during the experiment.
Exploitation of various types of application vulnerabilities can
contribute to a variety of attacks, such as Smurf, Neptune,
Warez client, Portscan (e.g., portsweep, ipsweep), Guess

Figure 9: Confusion Metrics for Xgboost Model

Password, Teardrop, Buffer Overflow, Backdoor (Back), Satan,
and Land attacks. Inadequate network segmentation can
cause it easier for attackers to execute scanning and
reconnaissance activities, leading to attacks such as Smurf,
portsweep, and ipsweep. Lack of encryption and secure
communication protocols can expose microservices to
sniffing attacks and spoofing attempts, contributing to attacks
like the Land attack. Attackers can employ exposed or
unprotected APIs to introduce backdoors, assist the
distribution of malicious software (Warez), or do other
unauthorized acts. Unauthorized access can be caused by
weak or misconfigured authentication methods.

To obtain access, attackers can opt for brute force assaults
(Guess Password) or take advantage of weak passwords. Lack
of proper input validation in microservices can allow attackers
to inject malicious code, leading to buffer overflow
vulnerabilities. Using outdated or vulnerable third-party
libraries or components in microservices can expose the
system to known vulnerabilities, as seen in the Neptune attack.
Exposed management interfaces with weak authentication
can be targeted for unauthorized access and exploitation,
contributing to attacks like Guess Password or Backdoor.

Inadequate logging and monitoring procedures can make it
difficult to recognize and respond to various kinds of attacks,
such as malicious activity, illegal access, and reconnaissance
efforts like Ipsweep and Portscan. Attackers may be able to
carry out a number of assaults, due to misconfigurations in
cloud services, such as unsafe storage or network
configurations. Microservices are susceptible to
network-based assaults such as Teardrop and Land attacks if
they have inadequate network security security in place, such
as weak firewalls or incorrectly configured security groups.

Therefore, conducting experiments like this enables the

1133



Analyzing Cloud Traffic for Web Honeypot using Microservice-based Architecture and XGBoost algorithm

monitoring of potential invasions in the cloud through regular
assessments, proactive monitoring, audits, and threat
awareness.

6. Comparison with Existing Works

The research paper HoneyKube[18] focuses on the
development and deployment of a Microservices-based Web
Honeypot. It likely delves into how HoneyKube enhances
cybersecurity through the simulation of web services to detect
and analyze potential threats. It lacks the through analysis of
the datasets collected during the simulation which facilitates
in predicting potential future disasters caused by the
microservice design flaw, which finally hampers and exposes
credible data to unauthorized entities. While it has gathered
system traces, network traces, and Kubernetes audit logs, as
well as introduces vulnerabilities to services, it faces
limitations in effectively analyzing various types of attacks and
establishing the root causes of these attacks. The system falls
short in providing comprehensive insights into the nature and
origin of different attacks, potentially limiting its ability to
offer a thorough understanding of the security threats it
encounters. By building a containerized cloud-based
honeypot system, the research study [12] provides a unique
method to cybersecurity. This system functions as a deception
technique, luring and tracking intruders. Despite the fact that
the research mainly focused on DDoS attacks, it also fails to
provide an early warning when DDoS traffic is detected.

Table 3: Comparison between this work and others

Performance Metrics [19] [20] [21] This Work

Accuracy 0.97 0.994 0.967 0.999378
Precision 0.99 0.994 0.987 0.999344
Recall 0.98 0.994 0.943 0.999378
F1-score 0.97 0.994 0.964 0.999317

This research aims to assess data collected through the use of
the XGBoost algorithm, aiming to identify attack patterns and
various attack variations within the network. Additionally, the
study introduces a approach called request queuing,
facilitating the monitoring of potential attacks and
contributing to the prevention of Distributed Denial of Service
(DDoS) attacks to a certain extent. In this thesis, the utilization
of the XGBoost algorithm stands out for its efficiency in
detecting and analyzing gathered threats with high accuracy
and minimal training time. The comparison is conducted by
evaluating the performance of various models employed in
prior research papers alongside the current work. Upon
examining the accuracy metrics, it is evident that the model’s
performance in this work surpasses that of the models used in
previous research. In particular, the accuracy values reported
in Papers [19, 20, 21] are 0.97, 0.994, and 0.967, respectively. In
contrast, the accuracy achieved in this thesis work
outperforms all, with a notable accuracy of 0.9993. The
application of this model has enabled the research to
effectively analyze diverse techniques employed by attackers,
showcasing the algorithm’s capability to provide precise
insights into various threat scenarios. The efficiency of
XGBoost contributes to a thorough understanding of potential

security risks, enhancing the overall effectiveness of threat
detection and analysis in this research.

7. Limitation and Future Enhancement

A system compromise to the external environment during the
data collection process increases the risk of further security
breaches. Thus, the system must be carefully and thoroughly
monitored. This research focused solely at the XGBoost
algorithm in this study in order to analyze attack patterns;
therefore, a hybrid algorithm would be preferable for
analyzing data points. Furthermore, since the cloud expands
rapidly, researchers may consider introducing additional
constraints to address cloud security that aren’t limited to
specific platforms.

8. Conclusion

This research has significant contribution to the field of
security. The integration of a cloud-based microservice
honeypot with machine learning algorithms provides a
comprehensive and proactive approach to identifying security
risks. This study involves design and deployment of a
microservice-based honeypot for simulating and monitoring
potential security threats. Building upon this foundation, the
XGBoost algorithm was then applied to analyze the datasets
that have been collected during the simulation. By leveraging
machine learning techniques, this research systematically
processed the collected data, enabling the identification and
categorization of intricate attack patterns. This analytical
approach not only enhances understanding of evolving cyber
threats but also contributes to the development of more
effective and adaptive cybersecurity strategies.

Acknowledgments

The authors extend their sincere gratitude to all individuals
and Department of Electronics and Computer Engineering,
IOE, Pulchowk Campus whose contributions were essential in
the completion of this research. We appreciate the invaluable
guidance, support, and resources provided by our mentors,
colleagues, and academic advisors throughout the research
process. Special thanks go to the researcher who provided their
time and insights for this research.

References

[1] M. Duggan. The application of machine learning
to optimise live migration in cloud data centres.
ResearchGate, 2019.

[2] W. Han, Z. Zhao, A. Doupé, and G. J. Ahn. Honeymix:
Toward sdn-based intelligent honeynet. In In Proceedings
of the 2016 ACM International Workshop on Security
in Software Defined Networks & Network Function
Virtualization, pages 1–6, 2016.

[3] E. López-Morales, C. Rubio-Medrano, A. Doupé,
Y. Shoshitaishvili, R. Wang, T. Bao, and G. J. Ahn.
Honeyplc: A next-generation honeypot for industrial
control systems. In Proceedings of the 2020 ACM SIGSAC

1134



Proceedings of 14th IOE Graduate Conference

Conference on Computer and Communications Security,
pages 279–291, 2020.

[4] J. H. Jafarian and A. Niakanlahiji. Delivering honeypots
as a service. In HICSS, pages 1–10, 2020.

[5] P. S. Negi, A. Garg, and R. Lal. Intrusion detection and
prevention using honeypot network for cloud security.
In In 2020 10th International Conference on Cloud
Computing, Data Science & Engineering (Confluence),
pages 129–132, 2020.

[6] C. W. Tien, T. Y. Huang, C. W. Tien, T. C. Huang, and S. Y.
Kuo. Kubanomaly: anomaly detection for the docker
orchestration platform with neural network approaches.
Engineering reports, 2019.

[7] Z. Xu and T. Luo. Cloud-native sandboxes for
microservices: Understanding new threats and attacks.
In Blackhat Europe. 2018.

[8] S. S. Dhaliwal, A. A. Nahid, and R. Abbas. Effective
intrusion detection system using xgboost. In Information,
9(7), 2018.

[9] Y. Song, H. Li, P. Xu, and D. Liu. A method of intrusion
detection based on woa-xgboost algorithm. In Discrete
Dynamics in Nature and Society, 2022.

[10] H. Yan, K. Yan, and G. Ji. Optimization and prediction
in the early design stage of office buildings using genetic
and xgboost algorithms. In Building and Environment,
218, 109081., 2022.

[11] G. Purswani, N. Hemant, R. K. Singh, and R. Parashar.
Honeypot in a container with detailed analytics. In
Applied and Computational Engineering., pages 327–335,
2023.

[12] VS Devi Priya and S Sibi Chakkaravarthy. Containerized
cloud-based honeypot deception for tracking attackers.
Scientific Reports, 13(1):1437, 2023.

[13] Akash Ravi, Bhavye Sharma, and Avigyan Mukherjee. A
cloud-native honeynet automation and orchestration
framework.

[14] K. Sadaf. Phishing website detection using xgboost and
catboost classifiers. In In 2023 International Conference
on Smart Computing and Application (ICSCA), pages 1–6,
2023.

[15] Mouigni Baraka Nafouanti, Junxia Li, Edwin E Nyakilla,
Grant Charles Mwakipunda, and Alvin Mulashani. A
novel hybrid random forest linear model approach for
forecasting groundwater fluoride contamination.
Environmental Science and Pollution Research,
30(17):50661–50674, 2023.

[16] Ivan Rep and Vladimir Čeperić. Boosting the
performance of transformer architectures for semantic
textual similarity. arXiv preprint arXiv:2306.00708, 2023.

[17] Sasikumar Jayapal. Food Demand Prediction using
Statistical and Machine Learning Models. PhD thesis,
Dublin, National College of Ireland, 2023.

[18] C. Gupta, T. van Ede, and A. Continella. Honeykube:
Designing and deploying a microservices-based web
honeypot. In SecWeb, 2023.

[19] B. S. Sukhadeo, R. N. Patil, R. Atole, Y. D. Sinkar, U. C.
Patkar, and R. Chopade. Mlids: A machine learning-
based intrusion detection system using the nslkdd
data. International Journal of Intelligent Systems and
Applications in Engineering, 2023.

[20] D. Jeevaraj, B. Karthik, M. Sriram, S. P. Vijayaragavan, ,
and D. Gokulakrishnan. Intrusion detection in wsn using
supervised machine learning techniques. International
Journal of Intelligent Systems and Applications in
Engineering, 12(9s), pp. 483–490., 2023.

[21] Zahedi Azam, Md. Motaharul Islam, and
Mohammad Nurul Huda. Comparative analysis of
intrusion detection systems and machine learning-based
model analysis through decision tree. IEEE Access,
11:80348–80391, 2023.

1135


	Introduction
	Cloud Computing
	Microservice-based Web Honeypot
	Machine Learning Algorithm
	XGBoost Overview


	Literature Review
	Methodology
	Proposed System
	XGBoost Algorithm

	Experimental Setup
	Hardware and Infrastructure
	 Software Stack
	Microservices Deployment
	Kubernetes Manifests
	Experiment Execution
	Data Collection and Analysis

	Result and Analysis
	 Data Preprocessing and Feature Analysis
	 Model Training and Analysis
	 Comparison of Model Performance with Intrusion Type

	Comparison with Existing Works
	Limitation and Future Enhancement
	Conclusion
	Acknowledgments
	References

