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Abstract

simple character recognition.
Keywords

Many manuscripts and inscriptions were written historically, spanning several centuries in Kathmandu valley, by the indigenous
Newar people, who developed their own alphabetic writing system. To make a robust system for effective character recognition of
Prachalit Newa script and thus assisting in research and preservation of the language, a dataset was created from scratch and
various supervised deep learning models such as VGG-16 and AlexNet were devised, obtaining a significant accuracy of 92% in

Dataset, Deep Learning, Image Processing, Inscription, Optical Character Recognition

1. Introduction

1.1 Background

The Nepal Bhasa, also known as Newa Bhay or the Newa
language, is an endangered language belonging to the
Sino-Tibetan family of languages. Nepal Bhasa is a digraphic
language, which means it uses more than one script to
transcribe the language. Despite being a member of
Sino-Tibetan family, the scripts used to write Nepal Bhasa
share ancestry with the Indic scripts like Devanagari. Many
scripts used to write Nepal Bhasa have become obsolete, while
Ranjana and Prachalit scripts have maintained their
popularity in modern times.
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Figure 1: Varnamala of Prachalit Lipi

Prachalit Lipi came to prominence in 6th century CE, and was
widely used to write Nepal Bhasa till 20th century. The earliest
recorded instance of Prachalit script dates to 10th century CE,
in a manuscript titled Lankavatara Sutra , which is dated
Nepal Samvat 28 (908 AD). With the Nepali language (Khas
Bhasa) being the lingua franca of Nepal and eventually the de
facto official language starting from the early 20th century,
Devanagari script become more prevalent and thus Nepal
Bhasa also adopted Devanagari for transcription. Prachalit (lit.
“popular”) script hitherto have been prevalent and widely used
to transcribe the language in tremendous amount, many of
which are well-preserved within the valley, and still has
maintained its popularity in modern times within the Nepal
Bhasa linguasphere. However, extraction of information from
the manuscript is often a tedious task, as one is expected to be
acquainted with both the script and the language, and reading
the text line-by-line becomes quite inefficient in this regard.

1.2 Problem Statement

Understanding the script used in historical manuscripts is
necessary to comprehend the information they contain.
Similarly, it is necessary to learn the script for transcribing the
language in modern times. The major issue here lies in storing
the information from historical sources in a digital format.
Even if photographs of the manuscripts or inscriptions are
taken and saved as digital images, extracting the essential
information can be time consuming as one needs to first learn
the script, then read the text line-by-line and transliterate into
a different script before typing them in a textual format for
storage. This process is inefficient and consumes a lot of time.
To improve this process, a dataset of characters specific to the
writing system can be created, and deep learning algorithms
can be applied to accurately recognize characters and extract
information more efficiently.
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1.3 Objectives

* To apply deep learning model to effectively classify
Prachalit Newa Lipi characters

* To convert the recognized characters into Romanized
form, enabling their digitization

1.4 Scope of System

The research will be of great assistance to various professional
of related field such as archaeologists, paleographers, and
linguists. Given the vast number of historical manuscripts of
Kathmandu Valley archived in museums and historical places,
the project’s output will help scholars extract valuable
information from these manuscripts accurately and efficiently.
The digitized information can then be stored and archived for
future use.

2. Related Works

Recently, deep learning-based methods have drawn increasing
attention in handwritten character recognition.

Acharya et al. suggested a deep learning-based approach for
character recognition in languages like Hindi, Nepali, and
Marathi that employ the Devanagari script [1]. Their
recommended design made use of deep belief networks
(DBNs) and convolutional neural networks (CNNs) to achieve
great accuracy in character recognition. The proposed deep
learning architecture achieved an impressive accuracy of
98.47% on the Devanagari character recognition task. The 92
thousand pictures of 46 distinct classes of Devanagari
characters that were carefully separated from handwritten
texts made up the dataset utilized in this study. The authors
used dataset increment and dropout as two strategies to
increase the precision of their model, by using
transformations like rotation, scaling, and translation on
existing training samples, thus creating new training examples
from them.

Sonawane et al. [2] have employed 16870 pictures of 22 often
used Devanagari consonants to train a strong CNN namely
AlexNet, achieving a validation accuracy of 94.49% and test
accuracy of 95.46%. The study concluded transfer learning as
a better alternative due to fast training and only requiring few
samples. Das, et al. [3] have proposed a system for recognition
of handwritten Bangla characters using Extended
Convolutional Neural Network. The Bangla alphabet consists
of total 84 classes of letters- 39 consonants, 11 vowels, 10
numerals and 24 combined characters. The model’s accuracy
rates for Bangla numerals were 99.50%, vowels were 93.18%,
consonants were 90%, and mixed characters were 92.25%.

Prashanth et. al [4] have proposed a system for recognizing
handwritten Devanagari characters, using modified LeNet and
AlexNet CNN architectures. The goal of the experiment was to
create a dataset of 38,750 pictures of Devanagari vowels and
numerals, which was made available to other academics
working in this field. The data was gathered from more than
3000 people of various ages. The segmentation method here
was used to extract each character, and the dataset was used
for the tests. Three different CNN architectures were

experimented on; CNN, modified Lenet CNN (MLCNN) and
Alexnet CNN (ACNN). Using CNN, accuracy was 96% on
training data and 94% on unobserved data; MLCNN achieved
these accuracy rates at a lower cost while ACNN achieved
them at a higher rate. A minimal loss of 0.001% was discovered
after a series of studies on the data using various combination
splits of the data.

Mhapsekar, et. al [5] proposed a system for recognizing
handwritten Devanagari characters using Residual Neural
Network (ResNet) model. The ResNet 34 and ResNet 50
designs were employed, and the outcomes were compared
with the most advanced convolutional neural network
architecture, which has four and eight layers, respectively.
Without segmenting handwritten line text image into words or
characters, S. Gautam [6] has utilized CRNN to recognize it.
The RNN model is trained using LSTM with Alex Graves CTC
loss to solve the alignment issue in handwritten data.

3. Methodology

3.1 Dataset Creation and Acquisition

Creation of dataset involved collecting data from primary and
secondary sources. Primary sources of data involved
collecting handwritten data of school students, and collection
of manuscripts and inscriptions.

In the first approach, different public schools in Kathmandu
Metropolitan City were visited and forms as shown in fig. 2
were distributed to them. After collecting the forms, the forms
were scanned and cropped for collecting the characters for
dataset creation.
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Figure 2: Handwriting data collection

In the second approach, manuscripts were scanned to extract
for individual characters. Primary sources of manuscript were
the actual physical manuscripts available to us, of which we
took photographs and scanned the image. Secondary sources
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of manuscript were the pre-scanned manuscripts available on
the internet, which was simply downloaded and cropped as
shown in fig. 3.

Other primary sources of dataset included stone and metal
inscriptions available to us in various religious and heritage
sites across the Kathmandu Valley. The sites were visited and
photographs of inscriptions were taken, and akin to
manuscripts, the images were cropped and characters were
collected.
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Figure 3: Manuscript data collection

3.2 Data augmentation

Data augmentation refers to the process of increasing the
dataset for a machine learning model. Data augmentation
involves various image transformation techniques, such as
rotation, shearing, adding noise, changing contrast, among
others. Augmenting the existing dataset, especially if the
dataset is constructed from scratch, becomes beneficial for
the machine learning model as it manually increases the
dataset size and introduces additional noise which helps in
regularizing the deep learning model and increasing the
accuracy of recognition.

Since the dataset was constructed de novo, the dataset was
augmented to eventually aid the deep learning model we
implemented in the project.  The necessity for data
augmentation is that it primarily increases the size of dataset,
as image augmentation can help to create more sets of data
from a preexisting dataset. One image can be augmented
several times allowing to capture minute variations in the data.
Augmenting the dataset thus increases the robustness of
dataset. Having augmented data points make model more
robust as the model becomes less sensitive to small variations
in the dataset.

The images collected during the dataset were divided into a
total of 63 different classes, and grouped under three
categories: digits, vowels and consonants. The 63 different
classes included 10 vowels, 16 vowels and 37 consonants.
While creating the dataset, we observed that some characters
were used much more frequently than others, thus causing
class imbalance. For this very reason, augmentation was
necessary before training the model. Data augmentation
considerably increased the dataset size and thus we
maintained the dataset size at 800 characters per class. The

prime reason for data augmentation is to prevent overfitting of
the model. Overfitting occurs when the model is not able to
generalize well to unseen data. Augmentation prevents
overfitting by providing the model more diversed dataset to
learn from allowing detection of more features.

The distribution of the classes in the dataset before and after
augmentation is illustrated in fig. 5, fig. 4 and fig. 6.
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3.3 Image preprocessing

Preprocessing is an essential process during the project
implementation. This is because the images scanned from the
sources were not uniform in nature, while a dataset consisting

of uniform images were required for the model to be trained.

Image preprocessing was carried out using the OpenCV cv2
library, where the images were converted to grayscale,
followed by dimension reduction and resizing into 32x32
pixels resolution.

3.3.1 Grayscale Conversion

The function for converting an image to Grayscale is available
in the OpenCV cv2 package and turns a 3-channel RGB image
into a single grayscale image. Grayscale conversion also
increases the computational efficiency of the model as it
requires less computational resources to process. Grayscale
conversion also increases the contrast of the images, color
images have higher noise and distortion.  Grayscale
conversion is carried out using eq. 1 where 3-channel image is
converted to a grayscale image.

Gray=0.299-R + 0.587-G + 0.114-B 1)

Where R, G and B are the red, green and blue colour values of
the image, each of which is in a range of [0,255].

3.3.2 Resizing the Image

All the images in the dataset were resized into 32x32 pixel
resolution to maintain a uniform size input array. Resizing
of an image is carried out by using a scaling factor to reduce
an image of certain resolution to 32x32 while maintaining the
image’s aspect ratio. The images in dataset was bulk resized
using OpenCV library and a consistent 32x32 image size was
maintained for all images in the dataset. This operation is
performed on both the training dataset and input images to
ensure compatibility with the model’s input requirements and
reduce computational complexity. By standardizing image
sizes we simplify the preprocessing pipeline, making the model
more efficient, and potentially improving its generalization
ability for better performance on diverse data.

3.3.3 Normalization

Normalization in image processing typically involves scaling
the intensity values of the pixels in an image such that they
fall within a certain range, usually between 0 and 255 (for 8-bit
images) or 0 and 1 (for floating-point images).

Image normalization is a crucial step in image processing,
aimed at reducing variations among input images. This
process is essential for machine learning models to extract
meaningful features and improve their ability to handle
diverse data. By standardizing images and scaling them to a
specific pixel value range, we enable models to recognize
images regardless of their original pixel values. Four different
CNN models were implemented for the project. LeNet,
AlexNet, VGG and ResNet. This was carried out to test the
accuracy for character recognition in different networks and
to choose the best network based on accuracy, loss, precision
and F1 score.

3.4 Supervised Deep Learning Model

A supervised Convolutional Neural Network (CNN) is trained
using labeled data, where each input image has a
corresponding label. The goal is to establish a mapping
between inputs and outputs that generalizes well to new data.

In supervised CNN training, a large labeled dataset is used to
adjust the model’s weights based on the error between
predicted and true labels. During training, the network learns
to recognize various features in input images and combines
them to make accurate predictions. Once trained, the network
can predict labels for new, unseen images. Evaluation typically
involves measuring accuracy on a validation or test dataset.

Convolutional Neural Networks are apt choice for character
recognition system for several reasons. CNN are translation
invariant, which means CNNs can recognize characters
regardless of their position in an image, making them robust
to variable character placement. Moreover, CNNs are efficient
in feature extraction, and extract relevant image features like
lines, edges, and shapes for predictions, while efficiently
handling noise and degradation in images, outperforming
traditional methods. With deep networks and techniques like
transfer learning, CNNs achieve high accuracy in character
recognition.

A deep research into different models used for optical
character recognition, decisions was made for trying out 4
different models namely: VGG, Resnet, AlexNet, Lenet. Upon
implementing the models on the dataset, the results obtained
would be compared and contrasted, and the best performing
model would be picked for further improvements on the
project.

3.5 Implementation of Deep Learning Model
3.5.1 LeNet Architecture

The LeNet architecture was proposed by Lecun, et al [7] in 1998,
which was a groundbreaking research in the field of optical
character recognition. While the original LeNet architecture
constituted 7 layers, the model we implemented is a modified
LeNet consisting of 11 layers - 1 input layer, 2 convolutional
layers, 2 max pooling layers, 3 dropout layers, 1 flatten layer
and 2 dense layers. Sparse Categorical Crossentropy Loss was
used, ReLU was used as the activation function in hidden layers
and Softmax on the output layer, and Adam as the choice of
optimizer. The model thus has 484,864 total parameters.

3.5.2 AlexNet Architecture

The AlexNet architecture is a groundbreaking deep learning
architecture proposed by Krizhevsky, et al. [8] in 2012, which
optimized the performance of neural networks in character
recognition with a significantly powerful performance and
reduced error rate. The AlexNet implemented involved 16
layers: 1 input layer, 6 convolutional layers, 3 max pooling
layers, 2 dropout layers, 1 flatten layer and 3 dense layers. ReLU
was used as an activation function with Softmax in the output
layer. The loss function implemented was Sparse Categorical
Crossentropy Loss, and Adam was used as the optimizer. The
model thus has a total of 1,483,872 parameters.
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Table 1: Specifications of different CNN models used

Parameters LeNet AlexNet ResNet VGG

Batch size 64 64 64 64

Epochs 50 50 50 50

Image shape (32,32,1) (32,32,1) (32,32,1) (32,32,1)

Classification classes 64 64 64 64

Learning rate 0.001 0.001 0.001 0.001

Loss function Sparse Categorical | Sparse Categorical | Sparse Categorical | Sparse Categorical
Crossentropy Crossentropy Crossentropy Crossentropy

Optimizer Adam Adam Adam Adam

Filters 64,128 128 64,128 32,64,128

Kernel size (3,3) (3,3 3,3 3,3

MaxPool size 2,2) 2,2) 2,2) 2,2)

Dropouts 0.25,0.25 0.25,0.25 0.25, 0.50 0.25, 0.25, 0.25, 0.50

Activation function ReLU, Softmax ReLU, Softmax ReLU, Softmax ReLU, Softmax

Total parameters 484,864 1,483,872 9,390,784 1,368,928

Trainable parameters 484,864 1,483,872 9,390,784 1,368,928

Nontrainable parameters 0 0 0 0

3.5.3 ResNet Architecture 4. Results

The ResNet (Residual Network) model was introduced in a
paper titled “Deep Residual Learning for Image Recognition”
by Kaiming He et al [9] in 2016. ResNet in particular is known
for skipping layers during the learning process. In ResNet, the
weight layers learn from residual functions with reference to
input layers. The skip connections perform identity mappings
and are merged with the layer outputs by addition, enabling
the deep learning models with tens or hundreds of layers to
train easily and aproach better accuracy when going deeper.

In our implementation of ResNet, 15 layers were used to
define the model. The original Resnet Architecture included
12 layers, consisting of 1 input layer, 6 convolutional layers, 2
max pooling layers, 2 dropout layers, 1 flatten layer and a
dense layer. Like previous models, the loss function used was
Sparse Categorical Crossentry, ReLU and Softmax were used
as activation functions and Adam was used as the optimizer.
The model has 9,390,784 total parameters involved.

3.5.4 VGG Architecture

VGG, which stands for Visual Geometry Group, is a very deep
convolutional neural network originally proposed by
Zisserman and Simonyan [10] in 2014. A deep convolutional
neural network several multiple layers, the number of layers in
VGG vary depending on different architectures of the model.
VGG replaces the larger kernel sizes with several layers of
small kernel sizes, usually (3x3), one after another, thus
making significant improvements over feature extraction
compared to other CNN models.

We implemented a modified VGG architecture which includes
17 layers. The layers of the model include 1 Input layer, 6
Convolutional layers, 3 Max Pooling layers, 4 Dropout layers,
1 Flatten layer and 2 Dense layers. The loss function used
was Sparse Categorical Crossentropy Loss. ReLU was used as
the activation function in hidden layers and Softmax as the
activation on the output layer. Adam was used as the optimizer.
The model has 1,368,928 total parameters involved.

A total of 64 characters, has been taken for the dataset
creation: 38 consonants with some combined characters, 16
vowels and 10 numerals. Since there was no dataset available
for the Prachalit script, dataset was built from scratch, through
collection from various sources, such as manuscripts and
hand-written samples. Eventually, a total of 51200 images, of
64 classes, containing 800 images in each class, were trained
on 4 different CNN Architectures.

Five different CNN models were trained in Google Colab
notebook each for 50 epochs. The subsequent results
obtained were as follows.

Table 2: Observations using Different CNN models

Model Early Precision | Recall | F-1
Stopped

AlexNet 22 0.91 0.91 0.91

LeNet 50 0.86 0.86 0.86

ResNet 17 0.92 0.92 0.91

VGG 34 0.96 0.96 0.96

Table 3: Training, Validation, and Testing Parameters for
Different CNN Models

Training Validation Testing
Model Parameters Parameters Parameters
Loss | Accuracy | Loss | Accuracy | Loss | Accuracy
AlexNet | 0.11 0.96 0.29 0.93 0.30 0.92
LeNet 0.44 0.86 0.49 0.88 0.49 0.88
ResNet 0.11 0.96 0.31 0.93 0.26 0.93
VGG 0.20 0.93 0.18 0.95 0.15 0.95

Upon comparison it was found that the LeNet model was not
able to work properly for image classification task as it has
higher value of testing loss and lower value of accu racy on
unseen data. Whereas, VGG and ResNet and AlexNet had
better performance than the LeNet model. But, VGG model
was selected for the reason for it having a better performance
in the test(unseen) data set. The training loss is lowest among
the models tried which indicates that the model is being able
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to generalize well on unseen data and is not overfitting which
is also supported by the highest value of its testing accuracy.
The VGG model has precision, recall and F1 score of 0.96 , 0.96
and 0,96 respectively indicate that the model is able to classify
images with a higher level of confidence. A greater recall
number demonstrates the classifier’s ability to accurately
identify more positive cases, while a higher precision value
shows that the classifier is generating fewer incorrect positive
predictions. A classifier that performs well in accuracy and
recall has a higher F1 score. On comparison, the precision,
recall and F1 score of the VGG model is found to be highest
among the models tried showing that the model is able to
identify more positive cases, and fewer incorrect positive
predictions.
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Figure 7: Accuracy Curve of the best performing model

The training accuracy is 0.93, validation accuracy is 0.95 and
training accuracy is 0.95. The small gap between the training
and validation accuracy also shows that the model is not over
fit to the training data. The higher value of validation and
testing accuracy compared to training accuracy shows that the
model is being able to recognize and generalize to the unseen
data.
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Figure 8: Loss curve of the best performing model

The training loss is 0.20, validation loss is 0.18 and testing
loss is 0.15. The lower value of the loss in the training data
shows that the model is able to adjust its weights effectively.
The validation loss of 0.18 is slightly less than the training loss
indicating that the model is able to generalize well to data in

validation set. The testing loss of 0.15 is slightly lower than the
validation loss which shows that the model is performing well
on unseen data.

5. Conclusion

The project involved the creation of a Prachalit Script dataset
comprising 51,200 images distributed across 64 classes,
including consonants, vowels, and numerals, with 800 images
per class. These images were meticulously sourced from old
manuscripts and handwritten documents. Augmentation
techniques, such as rotation, skewing, and shearing, were
applied to expound the dataset. The dataset serves as a
valuable resource for training machine learning models, with
a particular focus on Convolutional Neural Networks (CNNs)
due to their data invariance and noise resistance properties.

Four CNN architectures, namely LeNet, AlexNet, ResNet, and
VGG16, were trained on the dataset. Among these models,
VGG16 demonstrated the highest accuracy and better
generalization to unseen data. However, the presence of
characters that closely resembled each other posed challenges
in categorization and feature extraction, leading to occasional
errors in predictions.

To mitigate overfitting, various techniques were employed,
including early stopping, dropout layers for regularization, and
hyperparameter tuning. The incorporation of dropout layers
proved effective in classifying complex and similar characters
within the dataset.

While the project is an initiation on character recognition of
ancient and medieval writing systems and yet a lot of work is
to be done for much more robust and efficient development of
the character recognition, these results demonstrate the
potential of supervised machine learning in supporting
conservation efforts to preserve language and culture.
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