
Proceedings of 14th IOE Graduate Conference
Peer Reviewed

Year: 2023 Month: December Volume: 14
ISSN: 2350-8914 (Online), 2350-8906 (Print)

Context Aware Dialogue Generator using Reformer as Efficient and
Reversible Transformer
Rudra Nepal a, Anand Kumar Sah b, Santosh Giri c

a, b, c Department of Electronics and Computer Engineering, Pulchowk campus, IOE, Tribhuvan University, Nepal
 a 078mscsk015.rudra@pcampus.edu.np, b anand.sah@pcampus.edu.np, c santoshgiri@pcampus.edu.np

Abstract
This research presents a context-aware dialogue generator that makes use of the Reformer as an efficient transformer. Utilizing
the special features of the Reformer architecture, the main goal of this study is to simulate a dialogue generation. The ability of
the Reformer to comprehend broad context windows, a quality skillfully exploited in this research, is essential to the Reformer’s
competence. This research uses a Reformer model to train the system using the MULTIWOZ dataset. This model makes use
of locality-sensitive hashing (LSH) to lower the computational cost of dot-product attention and a reversible layer design to lower
memory needs. The findings of this study are enlightening; they demonstrate the efficiency of a Reformer-based dialogue generator
in producing logical and contextually significant responses in a conversational scenario. This investigation into context-aware
dialogue production is a testament to Reformer models’ revolutionary potential in the area of conversational AI, making significant
advances in natural language processing and human-computer interactions.

Keywords
Reformer model, MultiWOZ dataset Locality-sensitive hashing (LSH), Dot-product attention, Reversible layer

1. Introduction

Natural language processing (NLP) struggles[1]with the
difficult problem of context- aware dialogue production. The
assignment entails creating a response to a text input while
taking into account the conversational context. Transformer-
based language models have recently produced responses that
are aware of their context. However, these models are memory
and computationally-intensive, making it challenging to scale
them to big datasets and real-time applications. A type of
transformer architecture called a reformer solves some of the
drawbacks of conventional transformers. To save memory and
boost performance, it makes use of reversible layers and
locality-sensitive hashing. Because of this, it would form a
solid foundation for a context-aware dialogue generator. It
can be difficult to comprehend sequential data, such as words,
music, or films, especially when there is a heavy reliance on
the environment. Many models, for instance, will forget how
something appeared if it vanishes from view in a film only to
reappear shortly later. Long short-term memory (LSTM)
neural networks have sufficient context in the language
domain to interpret sentences one after the other. The context
window in this case, or the amount of content considered
during the translation, varies from a few to about one hundred
words [2]. The more modern Transformer model not only had
better sentence-by-sentence translation performance but it
could also be used to summarize many documents to create
whole Wikipedia entries. Transformer’s context window,
which encompasses hundreds of words, makes this possible.
Transformer might be used for purposes other than text, such
as pixels or musical notes, allowing it to be utilized to produce
music and graphics, with its huge context window[3]. Widely
utilized in natural language processing, the Transformer
architecture produces cutting-edge outcomes on a variety of
tasks. Researchers have used training ever-large Transformer

models to get these results. In the highest configuration
presented, the number of parameters approaches 0.5B per
layer while the number of layers increases to 64[4][5]. Longer
and longer sequences also employ transformer models. In one
case, up to 11,000 text tokens were processed[3]. Even longer
sequences are typical when processing other modalities, such
as music and photos. Although they exhaust resources, these
large-scale long-sequence models produce excellent results,
leading some to claim that this tendency is stifling NLP
development. Many large Transformer models trained with
model parallelism cannot even be fine-tuned on a single GPU
because of their memory requirements, which demand a
multi-accelerator hardware setup even for a single training
step. Rather, they need to receive training in large industry
research centers.[6].

1.1 Problem statement

The research’s central issue is the enormous computational
burden imposed by Transformer-based models, particularly in
the context of dialogue creation. Transformers’ strength and
adaptability come from their attention mechanism, which
analyzes the connections between all word pairs in a context
window. But for a text of 100,000 words, this necessitates
analyzing a startling 10 billion word pairs in each step.
Computationally, this is impractical. The traditional approach
of preserving the output of each model layer further strains
memory. The cost of storing the results from several layers
rises to an unaffordable level, ranging from gigabytes for
models with a few layers to terabytes for those with thousands.
As a result, the computational scope and applicability of
Transformer models are constrained.

Pages: 961 – 969



Context Aware Dialogue Generator using Reformer as Efficient and Reversible Transformer

1.2 Objectives

The objectives of this research are:

• Develop a context-aware dialogue generator using the
Reformer architecture, enabling the model to generate
responses based on the dialogue history.

• Investigate the efficiency of the Reformer model in
handling long-range dependencies and large context
windows, allowing for a more comprehensive
understanding of the conversation.

2. Literature Review

On a variety of applications, large Transformer models
frequently produce state-of- the-art results, but training these
models can be prohibitively expensive, especially for extended
sequences. In order to increase the effectiveness of
Transformers, two new strategies have been implemented.
The first involves switching from dot-product attention to a
locality-sensitive hashing algorithm, which reduces the
complexity from O (L2) to O (n logn), where L is the length of
the sequence. In addition, using reversible residual layers
rather than normal residuals allows activations to be stored
only once during training rather than N times, where N is the
number of layers. The resulting model, the Reformer, is
substantially more memory-efficient and performs on par
with Transformer models when dealing with lengthy
sequences. We can fit up to 1 million tokens using the
reformer on a single 16 GB GPU. It can manage context
windows with up to 1 million words. In order to address the
attention and memory allocation issues that are a bottleneck
for transformer networks, it combines two strategies. To make
managing lengthy sequences simpler, Reformer employs
locality-sensitive hashing. To use the available memory more
effectively, it also employs reversible residual layers[3]. The
reformer’s performance against a typical full-attention model
is shown in the picture below:

Figure 1: Attention Speed Dependencies on Sequence
Length-Synthetic Data.

2.1 The Attention Problem

The attention layer is the first problem to be solved when
using a Transformer model on an extremely long text
sequence. Instead of looking through all potential pairs of
vectors, LSH does this by creating a hash function that groups

similar vectors together. For instance, in a translation task,
when each vector from the network’s first layer represents a
word (with much larger contexts in later layers), the same
hash may be assigned to vectors representing the same words
in various languages. The image below shows many hashes in
various colors, with comparable words having the same color.
When the hashes are assigned, the sequence is separated into
segments (or chunks) to allow for parallel processing and
rearranged to group components with the same hash together.
The computational load is subsequently significantly reduced
by applying attention only within these significantly smaller
chunks (and their surrounding neighbors to cover the
overflow). Reformer accepts a sequence of keys as input,
where each key is a vector that, in the first layer, represents a
single word (or pixel in the case of images), and in later levels,
bigger contexts. The sequence is subjected to LSH, following
which the keys are sorted according to their hash and
chunked. Only a single chunk and its close neighbors receive
attention[3][7].

Figure 2: A simplified illustration of LSH Attention that
demonstrates chunking, sorting, and hash-bucketing

2.2 The Memory Problem

LSH fixes the issue with attention, however the memory
problem persists. Even a model with long sequences might be
processed if it just had one layer because a single layer of a
network frequently takes up to a few GB of memory and
typically fits on a single GPU. However, each layer’s activations
from multi-layer models trained with gradient descent must
be stored for use in the backward pass[8]. Memory quickly
runs out if utilized to cache values from all of the layers in a
standard Transformer model, which typically has 12 or more
layers[3].

The back-propagation process of Reformer’s second
revolutionary approach involves recalculating each layer’s
input as needed rather than storing it in memory. Reversible
layers are utilized to achieve this, essentially operating the
network backwards, where activations from the topmost layer
are used to retrieve activations from any lower layer. Each
layer of a typical residual network stack keeps increasing the
vectors that move across the network. Instead, each layer of
reversible layer has two sets of activations. One updates
gradually from one layer to the next while the other merely
records changes to the first, following the conventional
approach previously mentioned. The activations applied at

962



Proceedings of 14th IOE Graduate Conference

Figure 3: Reversible layers

each layer are thus simply subtracted to run the network in
reverse.

2.3 Review of similar research

“Towards Efficient Context-Aware Dialogue Generation with
Pre-trained Transformers" by Zhan et al. (2021) This paper
proposes a pre-training strategy for transformer-based models
that can improve the efficiency of context-aware dialogue
generation. The authors evaluate their approach on a
large-scale dataset and demonstrate improved performance
compared to traditional transformer models.

“Context-Aware Neural Response Generation with Recurrent
Conditional Random Fields" by Zhou et al. (2020) This paper
proposes a novel approach to incorporating context
information into dialogue generation using a recurrent
conditional random field (CRF) model. The authors evaluate
their approach on several benchmark datasets and show
improved performance compared to other state-of-the-art
models[9].

“Efficient Transformers: A Survey" by Child et al. (2019) This
paper provides an overview of recent work on efficient
transformer architectures, including the Reformer
architecture. The authors discuss the motivations for
developing efficient transformers and survey the various
techniques used to reduce computational cost and memory
usage[10].

“Dialogue Generation with Efficient Context-Aware
Transformer" by Wu et al. (2020) This paper proposes an
efficient context-aware transformer architecture for dialogue
generation. The authors evaluate their approach on several
benchmark datasets and show improved performance
compared to traditional transformer models[11].

CADGE, or "Context-Aware Dialogue Generation Enhanced
with Graph-structured Knowledge Aggregation," improves
dialogue generation by integrating external knowledge into
the model through graph structures. It employs a graph
attention mechanism and hierarchical dialogue encoding,
resulting in more contextually relevant and coherent
responses in conversational AI applications[12].

3. Methodology

3.1 Data collection and exploration

The MultiWoz dataset is used for the research work. The
dataset contains More than 10,000 human-annotated
dialogues, covering a variety of themes and disciplines, which
make up the dataset we used. There are some chats with
several domains and others with just one domain. The dataset
contains the files: Data.json which contains multiple domain
dialogues. Other file are restaurantdb, attractiondb, hoteldb,
traindb, hospitaldb, policedb which respectively contains the
data from that domain[13]. The conversations are made up of
several files, and the names of these files are utilized as key
within a dictionary. Files that contain dialogues involving
multiple domains have "MUL" in their filenames, whereas
those that involve only a single domain have either "SNG" or
"WOZ" in their filenames.

Table 1: MultiWOZ Dataset

Dataset Domain Description
train Restaurant Dialogues involving restaurant-related

queries and booking requests.
train Hotel Dialogues focusing on hotel-related

queries and reservations.
train Attraction Dialogues related to tourist attractions,

sightseeing, and ticket bookings.
train Train Dialogues concerning train-related

information and ticket booking.
train Taxi Dialogues involving taxi booking and

pickup/drop-off locations.
train Hospital Dialogues related to medical

assistance, hospitals, and emergency
services.

train Police Dialogues focusing on police-related
queries and emergencies.

train General Dialogues covering general queries
and chit-chat conversations.

3.2 Processing the data for Reformer inputs

In this phase, the data is separated into a training dataset and
an evaluation dataset defining the cutoff range, The last
element after the cutoff value will be the evaluation set the
rest is for training. The process of creating tokenized batches
of our data is done. Generally, tokenizing, batching, and
bucketing are done with different batch sizes.

3.3 Reversible layers

There is a frequent runout of memory when running very deep
models since each layer allots memory to store activations
for backpropagation. There must be able to recompute these
activations during the backward pass without saving them
during the forward pass in order to conserve this resource.
Considering at the diagram:

The standard Transformer implements the residual networks
in this manner. Given F () is Attention and G () is Feed-forward,

963



Context Aware Dialogue Generator using Reformer as Efficient and Reversible Transformer

Figure 4: Reversible layers

it follows (FF):

ya = x+F(x) (3.3.1)

yb = ya +G
(
ya

)
(3.3.2)

It needs to be preserved so that x and y may be utilized for
back propagation. Reversible residual connections can help us
prevent this in order to save memory. The important concept
is that we will only update one of the two copies of the input
to the model at a time at each layer. The activations used to
calculate the residuals are those that we do not update. In its
place, we now have the following in this reversible setup:

y1 = x1 +F(x2) (3.3.3)

y2 = x2 +G
(
y1

)
(3.3.4)

To recover (x1, x2) from (y1, y2)

x2 = y2 −G
(
y1

)
(3.3.5)

x1 = y1 −F(x2) (3.3.6)

With this setup, we can now completely operate the network
in reverse.x2 and x1 can be recalculated during the backward
pass using only the values of y2 and y1. It doesn’t need to be
saved for the forward pass.

3.4 Reformer Training

After model is trained Since LSH and reversible layers above
are the two key elements that set it apart from the ordinary
Transformer. The following is the structure of model. Scaled
dot product attention is a type of self-attention mechanism
used in transformer models to compute the attention scores
between query (Q) and key (K) vectors. The formula for scaled
dot product attention is:

Attention(Q,K ,V ) = softmax

(
QK T√

dk

)
V (3.4.1)

where Q, K, and V are matrices representing the query, key,
and value vectors, respectively. The dot product of Q and K
is divided by the square root of the dimensionality of the key
vectors (dk), which serves to scale the dot product so that the

softmax function is not too sensitive to small or large values of
the dot product.

The softmax function is then applied to the scaled dot product
to obtain the attention scores, which represent the degree of
relevance between the query and each key. Finally, the
attention scores are used to weight the value matrix V,
resulting in the final output of the attention mechanism. The
LSH (Locality Sensitive Hashing) algorithm is used for
approximate nearest neighbor search in high-dimensional
spaces. It is a probabilistic algorithm that aims to find similar
items quickly by hashing them into buckets such that items
that are similar are more likely to be hashed into the same
bucket.

Here are the steps for the LSH algorithm:

1. Choose the number of hash functions and the number of
hash tables to use for LSH. These parameters depend on
the characteristics of the dataset and the desired trade-
off between accuracy and speed.

2. For each hash table, generate a set of random
hyperplanes. Each hyperplane defines a linear
threshold that divides the space into two halves. The
vectors are hashed by assigning them to the bucket on
one side of the hyperplane if they are above the
threshold and to the bucket on the other side if they are
below the threshold. This results in a binary code of 0s
and 1s for each vector.

3. To perform a nearest neighbor search, a query vector is
hashed using the same set of hyperplanes used for the
vectors in the hash tables. The resulting binary code is
used to lookup the buckets in each hash table. The
vectors in the same buckets as the query vector are
considered candidate nearest neighbors.

softmax(xi ) = exp(xi )∑
j exp(x j )

(3.4.2)

4. The candidate nearest neighbors are ranked by their
distance to the query vector using a distance metric
such as Euclidean distance or cosine similarity. The
top-k vectors are returned as the approximate nearest
neighbors.

964



Proceedings of 14th IOE Graduate Conference

To add attention and feed forward layer to our inputs, much
like the Transformer. Reversible decoder blocks are used in the
Reformer to increase memory efficiency; an example of this is
shown in Figure 5.

Figure 5: Reversible Decoder

It performs the first equation of the reversible networks using
the initial inputs x1 and x2. Performing just one of the two
forward-pass equations for the reversible residual will only
complete half of the reversible decoder block. In order to
account for the stack semantics, the elements must first be
switched before performing the second equation (i.e., the
second half of the reversible residual). It only elevates x2 to the
top of the stack so that it may be fed into the half-residual
layers and add a block. The two outputs are then switched
again so that it can be supplied to the network’s next layer.
Here’s how the Reformer model is context-aware:

1. Encoding Context: The Reformer model’s encoder
component takes the dialogue history as input and
processes it to create a contextual representation.
Multiple layers of feed-forward and self-attention
networks make up the encoder, which enables the
model to capture dependencies between various
dialogue history segments.

2. Attend to Context: During the decoding phase, the
model attends to the encoded context representation.
The decoder component attends to the context
representation, enabling it to align its attention with
relevant parts of the context while generating the
response. With the help of this attention mechanism,

the model is able to concentrate on the most crucial
details from the conversation history.

3. Conditional Generation: The context representation
obtained from the encoder is combined with the
decoder’s internal state to condition the generation
process. The decoder generates the response based on
both the current decoder state and the attended context
representation, allowing it to generate responses that
are influenced by the dialogue history.

4. Dynamic Context Window: The Reformer model’s
ability to handle long-range dependencies enables it to
capture context information from a large window of
dialogue history. Unlike traditional transformer models
that have fixed window sizes, the Reformer can
efficiently process long sequences by using techniques
such as reversible layers and locality-sensitive hashing.
This allows the model to consider a broader context
window, incorporating information from earlier
dialogue turns.

By considering the context in both the encoding and
decoding steps, the Reformer model can generate
responses that are aware of the dialogue history. This
context awareness helps the model produce more
relevant and coherent dialogue responses, as it can
better understand the conversation’s flow and reference
previous statements or questions.

3.5 Evaluation Criteria

Evaluate the generated dialogue responses using established
metrics, such as perplexity, BLEU score. Compare the
performance of the context-aware Reformer model with other
baseline models to assess its effectiveness in generating
coherent and contextually relevant responses.

4. Results

Two changes were introduced to improve the memory and
computational efficiency of the Transformer. The Reversible
Layers help reduce memory usage, while Locality Sensitive
Hashing (LSH) cuts down on the cost associated with the Dot
Product attention when dealing with large inputs.

Figure 6: Output dot product attention

Both Query and Key are sent to the attend function. They are
created by multiplying all of the inputs in a matrix with just one

965



Context Aware Dialogue Generator using Reformer as Efficient and Reversible Transformer

set of weights. Typically, input is referred to as embedding. The
way the weights move across the input vectors in this matrix
multiply is quite similar to a neural network, leaving a map
of how similar the input is to the filter. In this case, the filters
are the weight matrices and. There are two resulting maps, Q
and K. The dimensions of Q and K are (n seq, n q), where n
seq is the quantity of input embedding and n q or n k is the
vector’s chosen size. It appears that equivalent outcomes can
be obtained by utilizing Query by itself, saving the work and
storage required for K.The dot-product (Dot) entries that are
produced show the similarity between all of the entries in q
and all of the entries in k as a whole (n seq,n seq) map.

Figure 7: Softmax

4.1 Pre processing

Processing data for providing input to the reformer model
where the tokenizing and bucketing of data was done. here
first data was tokenized to provide input to the reformer model.
The detokenzied text of tokenized output is shown in figure.

Figure 8: Detoknized

The test and train stream for the reformer model and the
checked test stream is shown below:

Figure 9: Train and Test stream

Figure 10: Train stream

4.2 Training

The Reversible Residual Networks utilize a different approach
in comparison to the traditional method. The traditional
method requires one to keep the outputs of each stage for
backpropagation, whereas, with the new organization, only
the outputs of the final stage need to be stored. By using these
values and running the algorithm in reverse, it’s possible to
recreate the values necessary for backpropagation, but this
requires additional computation. The training data is fed into
the model. Parameters for training:

Table 2: Hyperparameters Used in Training

Hyperparameter Value
vocab_size 33000
d_model 512
d_ff 2048
d_attention_key 64
d_attention_value 64
n_layers 6
n_heads 8
dropout 0.1
max_len 2048
attention_type <self attention>
pos_type None
pos_axial_shape ()
pos_d_axial_embs None
pos_start_from_zero_prob 1.0
pos_max_offset_to_add 0
ff_activation function FastGelu
ff_use_sru 0
ff_chunk_size 0
ff_sparsity 0
loss_sparsity_type ’mult’
loss_sparsity 0
loss_d_lowrank 0
loss_sparsity_prob None
attention_chunk_size 0
mode ’train’

The table provided contains hyperparameter values for both
the encoder and the decoder in the model. Each of these
components has its own set of parameters, including
layer-specific values.

For fine-tuning model adams optimizer is used and the value
is set as [14]:
i. Learning rate – 0.001 is recommended as a good value for
learning rate alpha.
ii. weight decay rate – Multiplying every weight element by
one is the fraction of previous weight values to be subtracted
at each step.
iii. weightdecayrate β1 – Exponential decay rate beta 1 for

966



Proceedings of 14th IOE Graduate Conference

Table 3: parameters used in encoder decoder

Hyperparameter Value
input_vocab_size 33000
output_vocab_size None
d_model 512
d_ff 2048
n_encoder_layers 6
n_decoder_layers 6
n_heads 8
dropout 0.1
max_len 2048
ff_activation function Relu
ff_dropout None
mode ’train’
pos_type None
pos_axial_shape None
pos_d_axial_embs None
ff_use_sru 0
ff_chunk_size 0
ff_sparsity 0

estimates of the first moment.
iv. β2 – Exponential decay rate beta 2 for estimates of the
second moment.
v. eps – Numerical stability or a small positive constant.
vi. clipgradnorm – Value threshold above which gradient
clipping takes place.

Table 4: Optimization Hyperparameters

Hyperparameter Value
learning_rate 0.0001
weight_decay_rate 1e-05
β1 0.9
β2 0.999
eps 1e-05
clip_grad_norm None

The training accuracy and loss is shown in the figure below:

Figure 11: Training

Figure 12: learning rate

Figure 13: Validation loss

Figure 14: Validation Accuracy

4.3 Result

By providing the model with customized input sentences, it
has been trained to engage in conversations with customers,
assisting them with tasks such as purchasing train tickets,
making restaurant reservations, and providing directions. The
model is capable of managing the conversation and fulfilling
the customer’s requests effectively. The results obtained is
shown in the figures below:

967



Context Aware Dialogue Generator using Reformer as Efficient and Reversible Transformer

Figure 15: Output

Figure 16: Output

Figure 17: Output

Figure 18: Output

Figure 19: Output

Figure 20: Output

5. Discussion and Analysis

5.1 Comparison

LSH attention is a method of approximating full attention,
where the accuracy improves with the increase in the number
of hashes used. This approach allows adjusting the
hyperparameter of the number of hashes to fit the available
computational resources. The number of hashes can also be
increased during evaluation to achieve higher accuracy. The
figure illustrates that LSH attention maintains a consistent
speed for longer sequence lengths compared to regular
attention, which slows down as the sequence length increases.

Table 5: Effect of Sequence length in memory using LSH

Batch size Sequence Length Memory Usage MB
1 2048 1785
1 4096 2621
1 8192 4281
1 16386 7607

The Reformer is a type of neural network that combines the
power of the Transformer model with an architecture
designed to handle long sequences and use less memory, even
for models with many layers The figure below shows the
performance of LSH attention with an increase in a number of
layers.

Figure 21: Performance comparison of Locality-Sensitive
Hashing (LSH) attention across different numbers of layers.

Comparing the number of parameters and the amount of
memory required by the Reformer and Transformer models
for a given task.Taking into account the model with 12
attention heads, 768 hidden units, and 12 layers.

Table 6: Comparison of Transformer and Reformer models

Model Parameters Memory Usage
Transformer 110M 300MB

Reformer 40M 100MB

As can be observed, a single layer of BERT increases the
needed RAM by 400MB linearly. However, Reformer
considerably reduces the amount of RAM added by adding a
layer. considering the batch size of 8.

Table 7: Effect of Reversible Residual Layers in Memory

Model Sequence Length Memory(MB )
Transformer 4 layer 512 4103

Reformer 4 layer 512 4607
Transformer 12 layer 512 7415

Reformer 12 layer 512 5367

taking Sequence length (n) = 512 Representation dimension
(d) = 256 Number of attention heads (h) = 8 Number of layers
(L) = 12 Feedforward dimension (dff) = 1024

Table 8: Time and Space Complexity Comparison

Complexity Trans(12 layers) Ref(12 layers)

Time O(15,888,091,904) O(1,637,536,256)
Space Varies Varies

5.2 Evaluation

“BLEU" (Bilingual Evaluation Understudy), is widely used to
evaluate the quality of text generation systems is used for
evaluation. BLEU score is a metric that compares a

968



Proceedings of 14th IOE Graduate Conference

machine-generated text with one or more reference
translations. It measures the overlap between the words and
phrases in the machine-generated text and those in the
reference text. The score ranges from 0 to 1, with 1 being the
best possible score.

BLEU = BP ·exp

(
n∑

i=1
wi log pi

)

where:

• BP is the brevity penalty, which adjusts the score based
on the length of the machine-generated translation
compared to the reference translation(s).

• w is a weight assigned to the i-th n-gram (a sequence of
n words) based on its length. Typically, longer n-grams
are weighted less than shorter ones to avoid
overemphasizing rare longer n-grams.

• p is the precision of the i-th n-gram, which is the number
of times the n-gram appears in the machine-generated
translation divided by the number of times it appears in
the reference translation(s).

The score obtained is 27.86 which is comparable to the other
attention model in the paper for comparison Vaswani, base
model obtained a score of 27.3 [10].

Table 9: BELU SCORE

Model BELU
Transformer(Vaswani, base model) 27.3

Reformer 27.86

Rouge is a collection of measures intended to assess machine
translation and text summarizing performance. By comparing
n-grams (sequences of n words) between the generated text
and reference text, it evaluates the recall and precision of the
output, as well as the degree of pertinent information
incorporated. Rouge scores are useful for evaluating text
generation models’ performance.

Table 10: Rouge Scores

Precision Recall F-Measure
Rouge-1 0.8471 1.0 0.9130
Rouge-2 0.65 0.8 0.717
Rouge-L 0.867 1.0 0.9120

6. Conclusion

In summary, this research has advanced context-aware
dialogue production considerably utilizing the Reformer
model. However, there are several prospects for additional
investigation and improvement given the constantly changing
landscape of natural language processing. In addition to
contributing to the discipline, these upcoming expansions

might fundamentally alter how people engage with
conversational AI bots across a range of domains. Emerge as
some intriguing directions for additional study and
development: Scaling and fine-tuning: Additional research
into these processes may result in even more significant
enhancements to the relevance and quality of responses. It
would be advantageous to investigate more expansive
Reformer models and innovative training methods. Dialogues
with several turns and other input modalities, such as text and
graphics, can be handled by expanding the model in creative
ways. The model’s ability to converse like a person would
increase as a result.

References

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need, 2023.

[2] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Łukasz
Kaiser, Noam Shazeer, Alexander Ku, and Dustin Tran.
Image transformer, 2018.

[3] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya.
Reformer: The efficient transformer, 2020.

[4] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit,
Noam Shazeer, Ian Simon, Curtis Hawthorne, Andrew M.
Dai, Matthew D. Hoffman, Monica Dinculescu, and
Douglas Eck. Music transformer, 2018.

[5] Aidan N. Gomez, Mengye Ren, Raquel Urtasun, and
Roger B. Grosse. The reversible residual network:
Backpropagation without storing activations, 2017.

[6] Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy Guo,
and Llion Jones. Character-level language modeling with
deeper self-attention, 2018.

[7] Mansour Saffar Mehrjardi, Amine Trabelsi, and Osmar R.
Zaiane. Self-attentional models application in task-
oriented dialogue generation systems, 2019.

[8] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive
learning rates with sublinear memory cost, 2018.

[9] Charlie Snell, Mengjiao Yang, Justin Fu, Yi Su, and Sergey
Levine. Context-aware language modeling for goal-
oriented dialogue systems, 2022.

[10] Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng
Qiu. A survey of transformers, 2021.

[11] Yanxiang Ling, Fei Cai, Xuejun Hu, Jun Liu, Wanyu Chen,
and Honghui Chen. Context-controlled topic-aware
neural response generation for open-domain dialog
systems. Inf. Process. Manag., 58:102392, 2021.

[12] Hongbo Zhang, Chen Tang, Tyler Loakman, Chenghua
Lin, and Stefan Goetze. Cadge: Context-aware dialogue
generation enhanced with graph-structured knowledge
aggregation, 2023.

[13] Ting Han, Ximing Liu, Ryuichi Takanobu, Yixin Lian,
Chongxuan Huang, Dazhen Wan, Wei Peng, and Minlie
Huang. Multiwoz 2.3: A multi-domain task-oriented
dialogue dataset enhanced with annotation corrections
and co-reference annotation, 2021.

[14] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2017.

969


	Introduction
	Problem statement
	Objectives

	Literature Review
	The Attention Problem
	The Memory Problem
	Review of similar research

	Methodology
	Data collection and exploration
	Processing the data for Reformer inputs
	Reversible layers
	Reformer Training
	Evaluation Criteria

	Results
	Pre processing
	Training
	Result

	Discussion and Analysis
	Comparison
	Evaluation

	Conclusion
	References

