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Abstract
Cantilever shaft system is beneficial in various mechanical engineering application to transmit torque and rotational motion from
power source to various components. The cantilever shaft with multiple disc is particularly used for limited space application and
specific requirements configuration.The overall performance and safety of the system is reduced due to the excessive vibration and
resonance. Mathematical model of the multidisc cantilever system is developed using Extended Hamilton’s Principle and validate it
through the ANSYS simulation. Different mode shapes and vibration behavior are observed during analysis and compare the result
with mathematical solution. The critical speed obtained from the analytical method is close to simulation result.
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1. Introduction

Most of the mechanical engineering applications use a
cantilever system, such as turbine, drive system, centrifugal
pump etc. For the transmission of rotational motion and
torque from a power source to various components the
cantilever shaft system is used. Cantilever shaft with multidisc
system is advantageous to enhance the efficiency and capacity
of the overall system. The free vibration analysis of cantilever
shaft system helps to avoid excessive vibrations, structural
failures and resonance. The outcomes of this research will
contribute to the optimization of multidisc cantilever shaft
systems, ensuring their structural integrity, performance, and
reliability in real-world applications.

The response of multidisc cantilever shaft system depends on
the material properties, geometry of the discs, disc spacing,
applied force, rotational velocity etc. These factors affect the
natural frequency of the system, response amplitude, mode
shapes and critical speeds. Several research have been
conducted for the analysis of free vibration of shaft under
varying load conditions and end conditions. An analysis of
dynamics response of continuous shaft with different end
conditions [1]. In this paper, the equation of motion for simply
supported shaft and both end fixed shaft were developed
using the Hamilton’s principle. The critical frequency for both
the cases are analyzed and found that the rate of increase of
critical speed is more for simply supported shaft as compared
with the both end fixed shaft.Polynomial mode shape
functions were developed for continuous shafts with various
end conditions[2]. There are various methods such as
Galerkin method, assumed mode method, finite element
method, Rayleigh-Ritz method etc. used to determine the
vibration response of continuous system. In this paper,
polynomial shape functions for continuous shaft with
different end conditions were developed and compared with
the result obtained from classical algebraic method. Lee et al.
[3] used assumed modes method to analyzed the vibration of
a rotor with multiple flexible disks. The shafts of steam

turbine or computer storage devices mainly consist of
multiple disks. The disk’s flexibility and centrifugal stiffening
were considered when designing the model. A modal analysis
was conducted on a computer’s hard disk drive spindle system
and simple flexible rotors consisting of two disks. From this
analysis, it was clear that the dynamic coupling between the
shaft and the disk is significantly influenced by the
fundamental mode of the system. Afshari et al. [4] analyzed an
exact closed form solution for analyzing whirl behavior in
Timoshenko rotors featuring multiple concentrated masses.
For mathematical modeling of Timoshenko rotors with
number of concentrated masses, Dirac’s delta function was
used. The frequency equation was derived by considering the
various boundary conditions and corresponding mode shapes
were calculated. From the analysis, it was found that the value
of forward frequencies increases and backward frequencies
decreases with the increase of rotational speed by considering
the gyroscopic effect. Pokharel et al. [5] carried out an
investigation into the free vibration dynamic response of
overhung pelton turbine unit. The primary focus of the
research is on modelling of pelton turbine unit with a rigid
runner mounted on a circular flexible shaft supported by
bearings. The objective is to assess the system’s natural
frequency using various modeling approaches. In the discrete
system model, a simplified Jeffcott rotor model and Rayleigh’s
energy method were applied, while the continuous model
involved the calculation of kinetic and potential energy for the
runner, bucket and shaft. The Langrange’s equations were
used to formulate the governing equation and Rayleigh-Ritz
method was used to solve the equation. Finally, the final
results of critical frequencies for backward whirl and forward
whirl were compared by simulating the model in ANSYS
software.

Nirmall et al. [6] conducted an analysis of the free vibration
characteristics of cantilever beams constructed from a variety
of materials. All types of materials have some amount of
internal damping. In this research, different materials such as
aluminum, mild steel and brass were used for the free
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vibration analysis. The natural frequencies of cantilever
beams made from all the materials were calculated
mathematically and experimentally. Then, the result were
compared with the harmonic analysis performed in ANSYS
software. The vibration analysis of tapered beam was
conducted by Rishi Kumar Shukla [7]. The natural frequency
of the double tapered cantilever Euler beam is derived using
equation of motion. Weighted residual and Galerkin’s method
are used for finite element formulation of the beam and to
determine the natural frequency and mode shapes. Cantilever
beams with different taper ratios are used for the calculation
and the frequencies and mode shapes are compared for
different cases. Hosseini et al. [8]investigated the solution in
multiple scales for analyzing the free vibrations of a rotating
shaft exhibiting stretching non-linearity. In this paper,
gyroscopic effect and rotary effect are considered while shear
deformation is neglected. The equation of motion is derived
using Hamilton’s principle.The method of multiple scales
method is used to solve the partial differential equation and
determining the free vibration of the shaft. Both forward and
backward nonlinear natural frequencies are calculated and
then compared with the numerical simulations.

Previous studies have focused on the dynamic response
analysis of cantilever beams and shafts without considering
the multidisc configuration. However, limited research has
been conducted specifically on the dynamic behavior of
multidisc shaft systems. Therefore, there is a clear need to
comprehensively investigate and understand the vibration
analysis of multidisc cantilever shaft system.

2. Methodology

2.1 Mathematical Model

Assuming that the disc is rigid and considering only the
kinetic energy of the disc. Initially, an inertial coordinate
system denoted as X,Y and Z is defined, along with coordinate
system represented by , x, y and z, which are fixed at the centre
of the disc as shown in figure 1.

Figure 1: Coordinate System for a flexible shaft with a
Rotating Disc

The mathematical modelling is started by considering the
angular speed vector [wx, wy, wz] about the reference frame
xyz fixed to the disc. [9] wx

wy

wz

=
 −ψ̇cosθ sinφ+ θ̇cosφ

φ̇+ ψ̇sinθ
ψ̇cosθcosφ+ θ̇ sinφ

 (1)

Where, θ,Ψ, φ = Euler angles
The displacements of the disk’s center of mass along the
directions X and Z of the inertial reference frame respectively
by u and w. θ andΨ are very small
Ω = rate of spin wx

wy

wz

=
 −ψ̇cosθ sinφ+ θ̇cosφ

φ̇+ ψ̇sinθ
ψ̇cosθcosφ+ θ̇ sinφ

=
 −ψ̇φ+ θ̇
Ω+ ψ̇θ
ψ̇+ θ̇φ

 (2)

The equation (3) represents the disc’s kinetic energy.

T D = 1/2M D
(
u̇2 + ẇ 2)+1/2

(
I D x w 2

x + I D y w 2
y + I D z w 2

z

)
(3)

Where, MD = Mass of the disk
ID x,ID y , ID z = Inertia of disk of about principle axis xyz
ID x = ID z
After simplification, the equation (3) becomes,

T D = 1/2M D
(
u̇2 + ẇ 2)+1/2I D x

(
θ̇

2 +ψ̇2
)
+1/2I D y

(
Ω2 +2Ωψ̇θ

)
(4)

There are total three disc in consideration. Here, kinetic energy
of each disc is calculated. Equation (5) provides the expression
for the kinetic energy of the first disk.

Td1 = 1/2MD1

∫ L

0

(
u̇2 + ẇ2)δd

(
y − L

3

)
dy+1/2ID1x

∫ L

0

(
θ̇2 + ψ̇2)

δd

(
y − L

3

)
dy+1/2ID1y

∫ L

0

(
Ω2 +2Ωψ̇θ

)
δd

(
y − L

3

)
dy

(5)

Equation (6) represents the kinetic energy of the second disc.

Td2 = 1/2MD2

∫ L

0

(
u̇2 + ẇ2)δd

(
y − 2L

3

)
d y +1/2ID2x

∫ L

0

(
θ̇2 + ψ̇2)

δd

(
y − 2L

3

)
d y +1/2ID2y

∫ L

0

(
Ω2 +2Ωψ̇θ

)
δd

(
y − 2L

3

)
d y

(6)

Equation (7) describes the kinetic energy of the third disc.

Td3 = 1/2MD3

∫ L

0

(
u̇2 + ẇ2)δd (y −L)dy+1/2ID3x

∫ L

0

(
θ̇2 + ψ̇2)

δd (y −L)dy+1/2ID3y

∫ L

0

(
Ω2 +2Ωψ̇θ

)
δd (y −L)dy

(7)

The shaft is influenced by both the kinetic and potential energy.
The expression in equation (4) is kinetic energy of the shaft and
equation (5) is related to potential energy of the shaft, where L
is the length of the shaft. Equation (8) provides the expression
for the kinetic energy of the shaft.

Ts = 1/2ρs As

∫ L

0

(
u̇2t ẇ2)dy+1/2ρs Is

∫ L

0

(
θ̇2 + ψ̇2)dy+

ρIs LΩ2 +2ρIsΩ

∫ L

0
ψ̇θdy

(8)
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Equation (9) expresses the potential energy of the shaft.

V = 1/2EI zz

∫ L

0

[(
u′′)2 + (

w ′′)2
]

dy (9)

The cumulative kinetic energy of the system is determined
by summing up equation (5), equation (6), equation (7) and
equation (8).

T = 1/2MD1

∫ L

0

(
u̇2 + ẇ2)δd

(
y − L

3

)
dy+1/2ID1x∫ L

0

(
θ̇2 + ψ̇2)δd

(
y − L

3

)
dy+1/2ID1y

∫ L

0

(
Ω2 +2Ωψ̇θ

)
δd(

y − L

3

)
dy+1/2MD2

∫ L

0

(
u̇2 + ẇ2)δd

(
y − 2L

3

)
dy+1/2ID2x∫ L

0

(
θ̇2+)

ψ̇2)δd

(
y − 2L

3

)
dy+1/2ID2y

∫ L

0

(
Ω2 +2Ωψ̇θ

)
δd(

y − 2L

3

)
dy+1/2MD3

∫ L

0

(
u̇2 + ẇ2)δd (y −L)dy+1/2ID3x∫ L

0

(
θ̇2 + ψ̇2)δd (y −L)dy+1/2ID3y

∫ L

0

(
Ω2 +2Ωψ̇θ

)
δd

(y −L)dy+1/2ρs As

∫ L

0

(
u̇2 + ẇ2)dy+1/2ρs Is

∫ L

0

(
θ̇2 + ψ̇2)dy

+ρIs L2 +2ρIsΩ

∫ L

0
ψ̇θd y

(10)

Now, applying Extended Hamilton’s Principle:

δ

∫ t2

t1
(L+Wnc )d t = 0 (11)

The equation of motion is

MD1üδd

(
y − L

3

)
+MD2üδd

(
y − 2L

3

)
+MD3üδd (y −L)−

ID1y ü′′δd

(
y − L

3

)
− ID2y ü′′δd

(
y − 2L

3

)
− ID3y ü′′δd (y −L)+

ID1yΩẇ ′′δd

(
y − L

3

)
+ ID2yΩẇ ′′δd

(
y − 2L

3

)
+ ID3yΩẇ ′′

δd (y −L)+ρs As ü −ρs Is ü′′+2ρIΩẇ ′′+E Izz ui v = 0

(12)

MD1ẅδd

(
y − L

3

)
+MD2ẅδd

(
y − 2L

3

)
+MD3ẅδd (y −L)−

ID1y ẅ ′′δd

(
y − L

3

)
− ID2y ẅ ′′δd (y − 2L

3

)
− ID3y ẅ ′′δd (y −L)+

ID1yΩu̇′′δd

(
y − L

3

)
+ ID2yΩu̇′′δd

(
y − 2L

3

)
+ ID3yΩu̇′′δd (y −L)

+ρs As ẅ −ρs Is ẅ ′′+2ρIΩu̇′′+E Izz w i v = F1δd

(
y − L

3

)
+

F2δd

(
y − 2L

3

)
+F3δd (y −L)

(13)

For further calculation, the parameters of the system shown
in table 1 are used [10]. The main parameter are density of
the shaft material,length of the shaft, cross-section area of the
shaft, modulus of elasticity etc.

Table 1: Parameters of the System

S.N. Parameters Value
1 Density of shaft material 7680 kg/m3

2 Cross-sectional area of the shaft 3.14 x 10-4 m2

3 Length of the shaft 0.5 m
4 Modulus of Elasticity of shaft material 207 x 109 N/m2

5 Area moment of inertia of the shaft section 7.85 x 10-9

6 Moment of the shaft 0.0136 kg m2

7 Mass of a disc 1.401 kg

The mode shape functions for a cantilever shaft shown in
equation (14) is used to calculated modal mass,modal
damping and modal stiffness.

{φ(x)} =
{
φ1(x)
φ2(x)

}
=

{
y4 −4Ly3 +6L2 y2

y5 − 661
182 Ly4 + 412

91 L2 y3 − 163
91 L3 y2

}
(14)

From equation (12) and (13), the model mass, model damping,
and modal stiffness are obtained as shown in equations (15),
(16) and (17).

Mi = MD1 ·
(
φi (y)

)2
∣∣∣

y= L
3

+ MD2 ·
(
φi (y)

)2
∣∣∣

y= 2L
3

+

MD3 ·
(
φi (y)

)2
∣∣∣

y=L
+

∫ L

0
ρs As

(
φi (y)

)2 d y−∫ L

0
ρs Is

(
φ′′

i (y)φ1(y)
)

d y − ID1y
(
φ′′

i (y)φ1(y)
)∣∣

y= L
3

− ID2y
(
φ′′

i (y)φ1(y)
)∣∣

y= 2L
3
− ID3y

(
φ′′

i (y)φ1(y)
)∣∣

y=L

(15)

Ci = ID1yΩ
(
φ′′

i (y)φ1(y)
)∣∣

y=L/3 + ID2yΩ
(
φ′′

i (y)φ1(y)
)∣∣

y=2L/3+

ID3yΩ
(
φ′′

i (y)φ1(y)
)∣∣

y=L +2ρIsΩ

∫ L

0

(
φ′′

i (y)φ1(y)
)

d y

(16)

Ki = EIs

∫ L

0
φi v

i (y)φi (y)d y (17)

The calculations for the model mass, model damping, and
modal stiffness for each mode of the cantilever shaft are
performed using Maple software. Subsequently, additional
calculations are conducted to determine the critical speeds for
both forward and backward whirl for the first and second
mode shape functions. The natural frequency corresponding
to forward and backward whirl are calculated by using the
formula [1] shown in equation (18) and (19). The critical
speeds for both cases are listed in table 2 and table 3.

(λi )1 =

√√√√√1

2

{(
Ci

Mi

)2

+2
Ki

Mi

}
+

√(
Ci

Mi

)4

+4

(
Ci

Mi

)2 Ki

Mi

]
(18)

(λi )2 =

√√√√√1

2

{(
Ci

Mi

)2

+2
Ki

Mi

}
−

√(
Ci

Mi

)4

+4

(
Ci

Mi

)2 Ki

Mi

 (19)
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Table 2: Critical Speed for Forward Whirl

S.N. Speed First Mode (rad/s) Second Mode (rad/s) Ratio
1 0 139.69 756.68 5.42
2 500 142.28 811.99 5.7
3 1000 145.96 871.04 5.96
4 1500 149.74 933.74 6.23
5 2000 153.6 999.96 6.5
6 2500 157.56 1069.56 6.78
7 3000 161.6 1142.31 7.07
8 3500 165.73 1218.006 7.35
9 4000 169.94 1296.42 7.63

Table 3: Critical Speed for Backward Whirl

S.N. Speed First Mode (rad/s) Second Mode (rad/s) Ratio
1 0 139.69 756.68 5.42
2 500 135.19 705.15 5.21
3 1000 131.77 657.35 4.99
4 1500 128.45 613.2 4.77
5 2000 125,22 572,58 4,57
6 2500 122.08 535.33 4.38
7 3000 119.03 501.24 4.21
8 3500 116.06 470.09 4.05
9 4000 113.18 441.66 3.9

2.2 Simulation

Simulation was conducted to the validation of the
mathematical model of the multidisc cantilever shaft system.
For the simulation, a geometric model of the cantilever shaft
system with discs was prepared using ANSYS software, as
shown in Figure 2. Meshing of the model was performed as
illustrated in Figure 3. A fixed support was added at the end of
the cantilever shaft system, and rotational velocities ranging
from 500 rpm to 3000 rpm were applied to the shaft for
rotation. When the model was run to obtain a solution, it
shows bending in the shaft for various mode shapes. The
relationship between rotational velocity and frequency was
observed through the Campbell diagram, as shown in Figure 4.

Figure 2: Geometric Model of the Cantilever Shaft with Discs

Figure 3: Meshing of the Geometric Model

Figure 4: Campbell Diagram from ANSYS Simulation

3. Result and Discussion

3.0.1 Comparison between Analytical and Simulation Result

After completion of the mathematical calculation, the result
obtained from the ANSYS simulation and mathematical
calculation were compared with each other. The critical speed
for forward whirl for first mode in both calculation and
simulation is shown in table 4. Similarly, the critical speed for
backward whirl for first mode in both calculation and analysis
result is shown in table 5. From the both table it was found
that the value of critical speed in both the cases are close to
each other.

Table 4: Comparative Result of Damped Frequency for
Forward Whirl

S.N. Speed (rpm) First Mode (Maple) Hz First Mode (ANSYS) Hz
1 500 22.64 20.8
2 1000 23.23 21.58
3 1500 23.83 22.00
4 2000 24.45 22.26
5 2500 25.08 22.43
6 3000 25.72 22.56
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Table 5: Comparative Result of Damped Frequency for
Backward Whirl

S.N. Speed (rpm) First Mode(Maple) Hz First Mode (ANSYS) Hz
1 500 21.52 26.37
2 1000 20.97 24.89
3 1500 20.44 24.25
4 2000 19.93 23.92
5 2500 19.45 23.71
6 3000 18.94 23.57

Figure 5: Campbell Diagram From Mathematical Model
Analysis

From the above table it is clear that the critical speeds
corresponding to forward whirl increases with the increase in
operating speed in both mathematical calculation and
simulation. On the other hand, the critical speeds
corresponding to backward whirl decreases with the increase
in operating speed in both the cases.

The relationship between frequency and operating speed
obtained from mathematical model analysis is shown in
Figure 5. The critical speed for forward and backward whirl is
also calculated from the diagram. Similarly, the critical speed
for both the forward and backward whirl shown in figure 6 is
calculated in ANSYS software for the validation of the
mathematical model. From the comparative study between
both the mathematical and simulation result, it was found
that the critical speed for both the cases were close to each
other.

Figure 6: Campbell Diagram from ANSYS Simulation

4. Conclusion

The free vibration analysis of the multidisc cantilever shaft
system was conducted by using two mode orthogonal shape
functions. The mathematical model of the multidisc
cantilever shaft system was prepared by using Extended
Hamilton’s principle. Both analytical and simulation method
were employed to investigate the natural frequencies and
mode shapes of the multidisc cantilever shaft system.

The value of critical speed for forward whirl in mathematical
calculation was found to be 24 Hz. Similarly, the critical speed
for backward whirl in mathematical calculation was found to
be 21 Hz. Then, from simulation, the critical speed for forward
whirl was found to be 22 Hz and critical speed for backward
whirl was found to be 24 Hz.

After completion of the research, the critical speed obtained
from both the mathematical calculation and simulation result
were found to be close to each other.For the future work,
boundary conditions and geometric properties of the shaft
and disc will be modified and further analysis will be
conducted.
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