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Abstract
This research work was carried out to determine the continuous system’s natural frequency by mathematically modeling the
Pelton turbine unit with the centrally located rigid rotor on the circular flexible shaft, which was simply supported on both ends by
rigid bearings and had a rigid runner at the other end that caused the system to overhang. At first, the equation of motion and
associated boundary condition were found using the Hamilton principle, and an analytical solution was obtained from the Equation
Of motion(EOM). EOM is solved by the assumed mode method using the polynomial shape function for the first mode. The output
natural frequency of the system was obtained with an approximate solution for the continuous shaft and disk (runner-rotor) system
using the ANSYS simulation, which showed no appreciable deviation from the analytical solution. For the continuous system model,
the front whirl’s natural frequency increased along with the shaft’s rotational speed, while the backward whirl’s natural frequency
decreased.

Keywords
Mathematical modeling, Continuous System, Hamilton Principle, Assume Mode, Critical Speed, Natural Frequency

1. Introduction

Pelton turbine units are commonly utilized in hydroelectric
power plants for their high efficiency and reliability, requiring
careful study of rotor dynamics to optimize their performance.
Rotor dynamics studies rotating objects, focusing on forces
and vibrations. It aims to predict and manage vibrations,
reducing vibration-related failure by analyzing
transverse/lateral, longitudinal, and torsional vibrations.

Mechanical systems generate oscillations, which can cause
vibrations that can cause system failure and workplace
accidents. Excessive vibrations waste energy and produce
unwanted noise. Designing carefully reduces unwanted
vibrations, while natural frequencies occur naturally without
external force.

Resonance in turbines increases failure risk due to buckling
and shaft deformation. Vibration analysis focuses on
amplitudes and natural frequency. Due to high costs and
potential damage, dynamic analysis methodologies are
needed. The study of the Pelton turbine unit’s vibration
evaluated its critical frequency, reducing vibration-related
failure. This knowledge maximizes the effectiveness,
dependability, and lifespan of hydraulic turbine system
components and the overall system, as variations in operating
conditions should not bring the runner’s speed near the
critical frequency.

This work investigates the symmetric rotor-bearing system’s
lateral and torsional vibrations, coupled with external torque,
using a modified transfer matrix approach. Disk and shaft
orientations are described by the Euler’s angles, and the
Timoshenko beam is used to simulate the symmetric rotating
shaft. A continuous-system approach is employed, focusing

on synchronous and superharmonic whirls for increased
accuracy [1]. Dynamic analysis is performed on a Pelton
turbine unit to determine its natural frequency, while a
mathematical model calculates kinetic and strain energy,
using Lagrange equations and the Rayleigh-Ritz method for
rotor physics [2].

Pelton’s turbine units were modeled using mathematical
models, including discrete and continuous systems. The
governing equations were developed using the Jeffcot rotor
model and Rayleigh’s energy method and solved using the
Rayleigh-Ritz analytical solution method. The natural
frequency of the Pelton turbine unit was determined by
calculating the effective mass of a simply supported shaft at
the ends of the unit as a discrete single-degree-of-freedom
system. The result was close to the natural frequency
calculated using a continuous system model for the backward
and forward whirl [3]. Rotating Euler-Bernoulli shaft model
was used. The system’s governing equations are a coupled
system of differential equations. Free vibration analysis
reveals critical speeds for both backward whirl and forward
whirl modes. Forward whirl’s critical speed increases with
operating speed, while backward whirl’s increases with speed.
The rate of increase in the ratio of successive critical speeds is
higher for a simply supported shaft than for a shaft with both
ends fixed [4]. Analysis of free transverse vibration generated
by flexible rotor bearings at support ends is used to study the
dynamic behavior of shafts with various end conditions. This
analysis uses an analytical model based on a solid foundation,
flexible bearings, and a rigid disk. Kinetic energies, strain
energies, and non-conservative work are derived using the
assumed mode method. The system’s EOM is obtained by
substituting these expressions into Lagrange’s equation of
motion, determining solutions using natural vibrational

Pages: 948 – 954



Proceedings of 14th IOE Graduate Conference

frequencies [5].

Research demonstrates a method for analyzing forced and free
dynamic responses in Pelton turbine units’ shafts. The
Hamilton principle is used to model water jet impact and
derive bending vibration equations, identifying free and
forced reactions [6]. Torsional motion and torsional vibration
are common causes of failure in rotating mechanical
equipment. The equation of motion for a rigid disk and a
uniform shaft is taken into account, revealing resonance when
critical speed is less than half the natural frequency [7]. This
work examines the stability of a rotor system with a nonlinear
spinning shaft and stiff disks near critical speeds. It
investigates factors affecting linear frequencies, steady-state
response, stability, and bifurcations. The study finds that
increasing disk mass moment reduces the hardening effect
and amplitude of inertia [8]. The Musznyska model and short
bearing model are used to model a two-span rotor system,
describing nonlinear seal force and oil-film force. Numerical
solutions are computed using the fourth-order Runge-Kutta
technique. The model examines the dynamic behavior of
bearing and disk centers in the horizontal direction [9].

Only one rotating component is considered: the runner disk for
the simply supported and overhung condition. However, there
is a generator present in the actual device, and it has a revolving
component called a rotor. Therefore, the study problem of a
turbine rotor that is simply supported and a runner disk that is
overhung is taken into consideration.

2. Mathmatical Modeling

Most engineering issues can be solved by mathematically
simulating a physical system. For a thorough knowledge of the
many traits of the physical systems in real life, mathematical
models serve as the governing equations. Here, the rigid rotor
with rigid bearing support at positions with the flexible shaft
and the overhung rigid runner-bucket assembly (disk) on a
continuous shaft were the basic components taken into
consideration for the model creation. The figure shows an
asymmetrical rotating shaft with an arbitrary cross-section
and an undeformed length L. It revolves along its longitudinal
primary axis Y at a constant rotational speed. The global
coordinate X Y Z and the local coordinate x y z are used to
analyze the system’s dynamics. The transverse direction of the
shaft on the horizontal plane is traveled by x, the longitudinal
direction of the shaft is traveled by y, and the transverse
direction of the shaft is traveled by z on the vertical plane. The
figure represents a portion of the shaft, with deflections along
the X, Y, and Z axes designated by u(y, t), v(y, t), and w(y, t),
respectively. The shaft is slender and the gravity effect is
neglected. Only the transverse vibration of the system is
analyzed w(y, t), while the longitudinal and torsional effects
are ignored.

2.1 Development of rotational matrix for 312 Euler
angle

Any rotation may be expressed in terms of three subsequent
rotations about linearly independent axes, which are known
as Euler angles. Euler’s angles may be used to explain the
locations, angular velocities, and angular accelerations of

Figure 1: Runner and Rotor Assembly

rotating bodies such as gyroscopes and rotating bodies about
their centers of mass (aircraft, turbine shafts, etc.).

To obtain the desired orientation, the disk is first rotated about
the Z axis from the initial axis XYZ system to X1, Y1, Z1. The
axis Z remains coincident with the z1 axis. Then by an angle (
about the new axis X1–axis to x2, y2, z2. The axis x2 coincides
with the x1 axis. And finally, by an angle about a new axis y2

axis. The axis y2 coincides with y3 axis. The final coordinates
after rotation i.e., X3, Y3, Z3 is denoted by x, y, z.

(a) Rotation about Z-axis (b) Rotation about x1-axis

(c) Rotation about y2-axis
(spin)

Figure 2: Rotation angles for disks and shaft

 x
y
z

=
 CθCψ−SθSφSψ CφSψ+SφSθCψ −SφCθ

−CθSψ Cθ Sθ
SφCψ+SθCφSψ SφSψ−SθSφCψ CφCθ

 X
Y
Z


(1)

Equation 1 represents the link between the fixed inertial
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coordinates X, Y, and Z and the fixed coordinates of the body
x,y,z

2.2 Angular velocity of xyz frame

The xyz frame’s angular velocity vector in the moment is given
by

Ω= ψ̇Z1 + θ̇X1 + ψ̇Y2 [10]

ωx

ωy

ωz

=
−ψ̇cosθsi nφ+ θ̇cosφ

φ̇+ ψ̇si nθ
ψ̇cosθcosφ+ θ̇si nφ

 (2)

Where, θ,φ,ψ are the Euler angles and φ̇, θ̇,ψ̇ are its first-time
derivatives called the rate of spin, rate of precession, and rate of
nutation respectively. For the system considered, the spinning
axis is the Y axis and angular motion about X and Z axes are
the comparatively small constant rate of spin of shaft φ̇ =Ω
Thus, cosθ ≈ 1, si nθ ≈ θ,cosψ≈ 1 and si nψ≈ψ [11] then the
angular velocities becomesωx

ωy

ωz

=
−ψ̇si nφ+ θ̇cosφ

Ω+θ
ψ̇cosφ+ θ̇si nφ

 (3)

2.3 Disk

The disk is assumed to be stiff. Because no strain energy can be
determined, the only energy that characterizes this component
is kinetic energy.

Figure 3: The disk and its reference frames [11]
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(6)

Where, u, w is deflection along transverse axis x and z
respectively, M1 and M2 are the mass, and the moment of
inertia Ixxd1, Iy yd1, Izzd1 are about the principal axes X, Y, Z
axis of the rotor and Ixxd2, Iy yd2, Izzd2 is the moment of
inertia of runner. Since disk is thin and assume to be

symmetrical, Ixx = Izz = Md R2
d

4 , Iy y = Md R2
d

2

2.4 Shaft

Cross- section of the shaft is shown with the two reference
frames one with the inertial XZ with displacement u,v and a
rotating frame with the xz with displacement u∗, w∗
respectively. Since we are assuming transverse deflection in Z
and Xaxis only, we consider only w, u. The shaft has kinetic
and strain energy as it is treated as a flexible beam with a
uniform circular cross-section.

TS =1

2
ρS AS

∫ L

0
(
∂u

∂t
)2d y + 1

2
ρS AS

∫ L

0
(
∂w

∂t
)2d y + 1

2
ρS ISxx∫ L

0
(ωx )2 d y + 1

2
ρS ISy y

∫ L

0
(ωy )2d y + 1

2
ρS ISzz

∫ L

0
(ωz )2 d y

(7)

Figure 4: The cross-section of the shaft-source[11]
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TS =1

2
ρS AS

∫ L

0

(
u̇2 + ẇ2)d y + 1

2
ρS ISzz

∫ L

0

(
ψ̇2 + θ̇2)d y+

ρS ISzzΩ
2L+ρS ISy yΩ

∫ L

0
(ψ̇θ)d y

(8)

ρS denotes mass per unit volume, AS is meant to remain
constant and is the cross-sectional area of the shaft., and
Isxx = Iszz is the cross-sectional area moment of inertia of the
shaft around its neutral axis which is equal to π D4

64 and

ISy y = π D4

32 = 2∗ I Szz , where D is the diameter of shaft.

The shaft’s potential energy is determined by

Vs = 1

2
E ISZ Z

∫ L

0

[(
∂2u

∂X 2

)2

+
(
∂2w

∂X 2

)2]
d y (9)

Vs = 1

2
E ISzz

∫ L

0

[
u′′2+ w ′′2

]
d y (10)

Where E and ISzz are the Young’s Modulus of Elasticity and area
moment of inertial of the shaft cross-section about its neutral
axis respectively, which is equal to π D4

64 u̇ , ẇ denotes the time
derivative of u, w and u”, w” denotes the double derivative of
w with respect to y.

θ = ∂w

∂y
, θ̇ =

˙∂w

∂y
= ẇ ′

ψ=−∂u

∂y
,ψ̇=− ∂̇u

∂y
=−u̇′

φ=Ωt , φ̇=Ω

(11)

Thus, the system’s overall kinetic energy may be written as

Figure 5: Relation between angular and transverse
displacements
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The total Potential energy of the system is expressed as

V =Vs = 1

2
E ISzz

∫ L

0

[
u′′2+ w ′′2

]
d y (13)

Lagrangian functional for the system can be determined as

L = T −V (14)

Now applying extended Hamilton’s principle

δ

∫ t2

t1

(L+Wnc )d t = 0 (15)

Since we are analyzing free vibration. So, non-conservative
force is not considered, and applying the variational principle
we get the equation of motion.

2.5 Equation Of Motion and Boundary Condition

The equation of motion for the transverse vibration in x and z
direction is given by

[−M1δd

(
y − L1

2

)
ü + Izzd1δd

(
y − L1

2

)
ü′′+ Iy yd1Ωδd(

y − L1

2

)
ẇ ′′−M2δd (y −L)ü + Izzd2δd (y −L)ü′′+ Iy yd2Ω

δd (y −L)ẇ ′′−ρS AS ü +ρS ISzz ü′′+ρS ISy yΩẇ ′′− E ISzz u′v ]= 0

(16)

[−M1δd

(
y − L1

2

)
ẅ + Izzd1δd

(
y − L1

2

)
ẅ ′′− Iy yd1Ωδd(

y − L1

2

)
u̇′′−M2δd (y −L)ẅ + Izzd2δd (y −L)ẅ ′′− Iy yd2Ω

δd (y −L)u̇′′−ρS AS ü +ρS ISzz ẅ ′′−ρS ISy yΩẇ ′′− E ISzz w ′v ]= 0

(17)

Boundary conditions associated with the shaft for the assumed
system are[

E ISzz u′′δu′]∣∣L
0 (18)

[E ISzz w ′′δw ′]|L0 (19)
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[−Izzd1δd

(
y − L1

2

)
ü′δu − Iy yd1Ωδd

(
y − L1

2

)
ẇ ′δu − Izzd2

δd (y −L)ü′δu − Iy yd2Ωδd (y −L)ẇ ′δu −ρS ISzz ü′δu −ρS ISy yΩ
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(20)

[−Izzd1δd

(
y − L1

2

)
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(
y − L1

2

)
ẇ ′δu − Izzd2
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y=0 = 0

(21)

The Rayleigh-Ritz technique is often referred to as the
assumed modes method. To properly describe the rotor’s
lateral vibration behavior, the displacements variable u, w
must be written in terms of the shape function β(y) before
using the formulas obtained from the extended Hamilton
equation.

u(y, t ) = {
β

(
y
)}T

{U (t )} =βU

w(y, t ) = {
β

(
y
)}T

{W (t )} =βW
(22)

Where β(y)T is the orthogonal shape function that should
satisfy the above boundary condition from equation 4.18 to
4.21. Substituting equation 4.22 in the equation of motion in
equations 4.16 and 4.17 and applying the orthogonality
principle, we get the ordinary differential equation of motion
for i th mode for Ui (t ) and Wi (t ) can be obtained as

MiÜi +Ci Ẇi +KiUi = 0 (23)
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Where Mi is the modal mass, Ci is the modal damping, and Ki

is the modal stiffness which is given
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+
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∫ L

0
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iv
i (y)βiv
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(28)

2.6 Development of Polynomial Shape Functions

Since the highest power in the equation of motion is four so
polynomial shape function can be assumed to have an order
of four or higher. Hence, the first modes mode shape can be
assumed as

β1 = y5 + A4 y4 + A3 y3 + A2 y2 + A1 y + A0 (29)

Ai , Bi are the coefficients that can be determined by using
the boundary conditions and orthogonal relationships of the
mode shape function. Using the Boundary Conditions

βi (0) = 0, β′′
i (0) = 0, at y = 0

βi ′′ (L) = 0, β′′
i ′ (0) = 0, at y = L

βi (L1) = 0, , at y = L1

(30)

The coefficients of polynomial mode shape functions are
determined as

AO = 0, A1 =
40

12
LL3

1 −20L2L2
1 −L4

1, A2 = 0,

A3 = 20

6
L2, A4 =−40

12
L

(31)

Substituting these coefficients into Equations 29 the
expressions for the first mode shape function for a system are
established as:

β1 =y5 +
(
−40

12
L

)
y4 +

(
20

6
L2

)
y3+(

40

12
LL3

1 −20L2L2
1 −L4

1

)
y

(32)

3. Results and Discussion

3.1 Numerical Results

The first mode of a shaft disk system is solved numerically
as an example, as shown in figure 6. The parameters of the
hydropower unit that is used for analysis are shown in Table 1.

Analytical solutions were found for mathematical models to
determine natural frequencies under undamped free
vibration conditions, and their outcomes were analyzed using
various models Using Eqs (1), (2) and (3), equivalent mass
(Mi), equivalent damping coefficient (Ci) and stiffness (Ki) for
the first mode is found to be

Mi =−4.45×109kg

Ci = 2.713×109 ×Ω
K i =−7.805×1013
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Table 1: Model Parameters

SN Parameters Values
1 Mass of disk1, M1 35000 kg
2 Diameter of disk1, D1 240 cm

3
Moment of inertia disk1 along xx,zz axis,
Izzd1

12600 kg m2

4
Polar Moment of inertia of disk1 along yy
axis, Iy yd1

25200 kg m2

5 Mass of disk1, M2 2575 kg
6 Diameter of disk1 D2 176 cm

7
Moment of inertia disk2 along xx,zz axis,
Izzd2

499 kg m2

8
Polar Moment of inertia of disk2 along yy
axis, Iy yd2

998 kg m2

9 Density of Shaft, ϱs 7850 K g /m3

10 Diameter of Shaft, Ds 50 cm

11
Youngs Modulus of Elasticity of the Shaft
Material, E

202Gpa

12 Distance between the support L1 3000 mm
13 Total length of the shaft, L 4300 mm

14
Shaft cross-sectional area moment of
inertia about its transverse axis

0.003067 m4

15
Shaft cross-sectional Polar Area moment
of inertia about its longitudinal axis

0.006135m4

16 Cross section area of shaft 0.1963 m2

Table 2: Analytical Results

Modes
ω

rad/s
Frequency

Hz
Critical Speed

rpm
First Mode FW 212.268 33.784 2027.069
First Mode BW 104.519 16.633 998.026

3.2 Results from Simulation

Figure 6: Ansys Simulation Setup

Table 3: Simulation Results

Modes
Frequency

Hz
Critical Speed

rpm
Error

First mode FW 33.527 210.66 0.763%
First mode BW 17.1059 107.48 2.3%

Figure 7: Campbell Diagram from analytical solution

Figure 8: First mode shape from the analytical solution

Figure 9: Campbell Diagram from ANSYS simulation

Figure 10: First mode FW shape from ANSYS simulation

953



Dynamic Response of Rotor – Turbine Assembly for Undamped Free Vibration

Figure 11: First mode BW shape from ANSYS simulation

4. Conclusion

The real Pelton turbine unit’s mathematical models were
created as continuous system models. The governing
equations for continuous system models were derived by
computing the kinetic and strain energy of the shaft and disk.
Natural frequencies were found using the Rayleigh-Ritz
analytical solution technique to the equations of motion
obtained by applying the Hamilton principle and Lagrange’s
equation. Analytically, the natural frequencies and critical
speed were found to be 104.519 rad/sec for the backward whirl
and 212.268 rad/sec for the forward whirl. From the ANSYS
simulation, the natural frequencies and critical speed were
found to be 210.66 rad/sec for backward and 107.48 rad/sec
forward whirl. The output natural frequency of the system was
obtained with an approximate solution for the continuous
shaft and disk (runner-rotor) system using the ANSYS
simulation, which showed no appreciable deviation from the
analytical solution with the error of 0.763% and 2.3% for the
Forward whirl and Backward Whril respectively. Natural
frequency and critical speed calculated from this study can be
used to study reliability of hydropower.
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