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Abstract
In this study, the natural frequency for different mode of the transverse vibration for the hydro generator assembly supported on
the elastic bearing are analysed with the help of mathematical approach namely transfer matrix method. For the formulation of
transfer matrix of the shaft, two different beam theory i.e Euler-Bernoulli Beam theory and Timoshenko Beam theory are considered.
The solutions obtained with these considerations are compared with the results obtained from the Finite Element method(FEM) to
evaluate the reliability of the mathematical approach.As per the calculations , the natural frequency with Euler Bernoulli beam model
for first three modes are 17.46 Hz, 57.83 Hz and 87.65 Hz and the same for Timoshenko beam model are 17.32 Hz, 56.12 Hz
and 82.07 Hz. Form FEM, the natural frequency calculated for first three modes are 20.01 Hz, 49.9 Hz and 90.54 Hz. The results
obtained with both the beam theory are close to the result obtained from Finite element method however, the results obtained from
the Timoshenko beam concept are more close to the results from FEM for two flexural vibration mode due to the consideration of
the shear deformation and inertial property of the beam.
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1. Introduction

Most of the power generating units comprises of disk
connected to the shaft. One prevalent instance of such
machinery is the hydro turbine generator assembly, utilized
for generating electricity in hydroelectric power plants.
Vibration of hydro turbine generating system strongly
influences the safety of the powerhouse where turbines are
installed. Thus, the safe and stable operation of hydro power
station is becoming increasingly significant in engineering
practice. It has profound significance to explore the vibration
causes and vibration characteristics of the generating unit to
take more precise protective measures to ensure the optimal
operation of the hydro power station.

For a hydro generator assembly unit, the vibration aroused
due to bending generally has more relevance than vibration
due to torsion [1]. To evaluate the natural frequency and
critical speeds of hydro-turbine with its shaft, FEM model
based on Ansys was used and observed that the gyroscopic
effect has an effect on critical speed [2]. Vibration analysis of a
simply supported turbine with shaft and bearing assembly
was carried out to determine the natural frequency of the
system. Sensitivity of various parameters such as length of
shaft, diameter of the shaft and stiffness of the bearing were
also performed to check the dynamic response of the
assembly. Mathematical modelling for the equation of motion
was carried out by calculating the Kinetic energy and potential
energy of the shaft and a rotor disk [3]. Experimental
approach to find the natural frequency and sensitivity of
parameters as stated in above research was conducted. When
the results were compared with the mathematical modelling, 4
percent error was noticed. Sensitivity of parameters shows a
similar result as in above cited research [4]. Free vibration
analysis of turbine assembly is performed by assuming the

model with single degree of freedom (SDOF) and continuous
system. For SDOF type, Foppl/Jeffcott rotor modal and
Rayleigh’s Energy Method: Effective mass model Which are of
discrete type models are used for calculation of natural
frequency and for continuous system, continuous system
model with total energy of system are used[5]. Vertical shaft
turbine assembly was considered for the vibration analysis by
performing the mathematical modelling. The effect of axial
strain energy was also used during the calculation of total
energy and derivation of equation of motion. Galerkin
method was adopted to find the solution of the analytical
method. To validate the mathematical model, model analysis
is performed using Ansys [6]. Similar approaches were used
for the vibration analysis for overhung assembly of turbine
and shaft also [7].

From above literature, it is noticed that the researches had
been performed to study the dynamic behavior of different
arrangement of the turbine assembly such as simply
supported, vertical axis and overhung system with single rigid
mass body only with different mathematical approach such as
FEM, effective mass model with assumed mode shape and
Rayleigh energy methods. Actual hydro generator consist
rotor body, turbine runner, fans and speed sensing devices as
rigid mass body with stepped shaft. Again, each evidences of
the literature prove that there will be different type of
vibration pattern when the assembly of turbine, shaft, rotors
and bearings differs.

In this research, a transverse vibration analysis of a hydro
generator assembly which consist of stepped shaft, turbine
runner, rotor and elastic bearing is performed to determine
the lateral bending natural frequency at different mode of
transverse vibration. A stationary shaft assembly is considered
for the analysis which doesn’t include the gyroscopic effect
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due to absence of spinning motion. Thus, the stationary shaft
is considered as a beam element. A different mathematical
approach namely transfer matrix method is used for the
analysis as this method contains simpler mathematical
approach than the methodology presented in above cited
literatures. The basic assumption of the method is that the
rotor and runners are rigid thin disks.

2. Methodology

Conventional transfer matrix method famously known as
Myklestad and Prohl Mehtod [8] with massless Euler-Bernoulli
beam have been extensively used in the transverse vibration
of the rotating shaft-disk system. In this study also, the same
has been adopted as one of the analytical method. The
disadvantages of this method are that the mass of the beam
has to be assumed as a concentrated at different location.
These concentrated points are taken as lumped rigid mass
without rotary inertia and the shaft is treated as mass less
Euler Bernoulli beam. Accuracy depends on how many
concentrated points are defined for the beam segments.

To avoid the disadvantages of the conventional method,
transfer matrix method based on Timoshenko beam theory is
also formulated [9] in this research. Timoshenko beam is
capable of handling the distributed mass of the shaft, rotary
inertia and the shear deformation. The solution obtained
from the transfer matrix method with Euler beam and
Timoshenko beam is then compared with the results obtained
from the commercial FEM software Simscale to validate the
reliability of the mathematical model.

2.1 Transfer Matrix Formulation

In transfer matrix formulation, the assembly is discretized into
number of beam segments, mass/disk and supports station.
For them, the state variables such as transverse displacement,
rotational displacement, bending moment and shear force at
two end of the beam and two sides of the disk/mass are
interrelated with the help of elementary transfer matrix of
each components. Multiplication of all the elementary
transfer matrix gives the overall transfer matrix of whole
assembly which gives the natural frequency of the vibrating
system after the application of the natural boundary condition
of the system. The whole process is illustrated in the below
sections.

2.2 Transfer matrix for Mass-Less Euler Bernoulli
Beam

For the Euler Bernoulli beam, the mass of the beam is
assumed to be concentrated at different location and the
beam is considered as mass less with flexural rigidity.

Figure 1: Beam Segment

Figure 1 shows the beam free body diagram of a beam for
which the transfer matrix to relate the state variables are two
ends are formulated with the help of elastic line theory and the
equilibrium condition. The beam is considered as i th element.
Equation 1 gives the relation between the state variables at two
ends of the shaft i.e. i th and (i −1)th ends which can be further
expressed as equation 2 [8].
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In the above equation, v , ϕy , M and Q are the transverse
displacement, angular displacement, bending moment and
shear force considered for the single place motion. l is a
length of the beam, E is a modulus of elasticity and I is a
diametrical area moment of inertia. [F ]i is a field matrix
which relates the state variables {S} at i th and (i −1)th ends. R
and L notations are also assumed for a beam ends as the i th

end of the beam is connected to the left side of the disk at that
location and (i −1)th end of the beam is connected to the right
side of the disk at that location.

2.3 Transfer matrix for Timoshenko Beam

Unlike Euler beam, Timoshenko beam considers the rotary
inertia and the shear deformation of the beam. There is no
need for concentrated mass assumption as in the case of Euler
beam. Consider a beam segment which is vibrating in a single
plane with frequency ω, having length l , cross-sectional area
A, density ρ and second moment of inertia I . As shown in
the figure 2, the slope of the centre line of the vibrating beam
d v/d x is affected by both the bending moments and shear
force. Bending moment rotates the face of cross-section with
an angle ϕy and after then, the shear force act to turn the
centre line to adopt the slope d v/d x. The angle between the
centre line of beam and the line which is perpendicular to the
face is a shear angleϕy +d v/d x which is caused by shear force.
The mathematical expression for the shear force and bending
moment is given by equation 3 and equation 4 respectively
[10].

Q = k̂G A
(
v̇ +ϕy

)
(3)

M = E I
dϕy

d x
(4)
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The notations G denotes the shear modulus of rigidity, k̂
denotes the shear deformation which depends upon the cross
section of the beam, v denotes the transverse displacement,
ϕy denotes the angular deformation, Q denotes shear force
and M denotes the bending moments.

Figure 2: Effect of shear on beam deflection (left) and force
acting on beam element (left)

The equilibrium equation for moment and shear force for an
infinitesimally small beam segment having length d x can be
expressed as equation 5 and equation 6 with reference to the
figure 2 [9].

d M

d x
=Q −ρIω2ϕy (5)

dV

d x
=−ρAω2v (6)

substituting the derivative of equation 3 with respect to x and
equation 4 in equation 6 and again, substituting the equation 4
and equation 6 to the derivative of equation 5, one obtains two
differential equations for v and M .Eliminating M from these
equation, one obtains fourth order differential equation in v
which is expressed in equation 7.
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Substitution of the following parameters on above fourth order
equation leads to the characteristic equation with four roots
±β1 and ± jβ2 which are shown in equation 8.
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The solutions for the state variables is derived using the roots
of the characteristics equation which is expressed in a matrix
form in equation 9 [9].
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Further, the same can be expressed as equation 10.

S(x) = B(x)a (10)

With reference to the above figure 1, using the same
nomenclature for the ends of beam as above, a transfer matrix
is formulated. At (i − 1)th end, x = 0 and at i th end, x = l .
Substituting these in equation 10 one by one and performing
some manipulation, one obtains equation 11 to equation 13.

SR
i−1 = B(0)a (11)

SL
i = B(l )a (12)
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i = B(l )B−1(0)SR

i−1 (13)

The expanded form of equation 13 can be expressed as
equation 14.
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with,

c0 =∆
(
β2

2 coshβ1 +β2
1 cosβ2

)
,c1 =∆

(
β2

2

β1
sinhβ1 +

β2
1

β2
sinβ2

)

c2 =∆(
coshβ1 −cosβ2

)
,c3 =∆

(
sinhβ1

β1
− sinβ2

β2

)
∆= 1

β2
1 +β2

2

Equation 14 can be further expressed as equation 15.

{S}L
i = [F ]i {S}R

i−1 (15)

[F ]i is a field matrix which relates the state variables {S} at i th

and (i −1)th ends.

2.4 Transfer matrix for Disk and Elastic supports

For the analysis of the rotor and runner, a simplified disk
element is considered to formulate the transfer matrix.
Likewise, the bearings is modeled as elastic spring with
specific stiffness values. The behavior of the vibrating disk or
mass significantly impacts the natural frequency of the overall
system. For i th slender rigid disk with mass m and diametrical
mass moment of inertia Id or spring of the system vibrating
with frequency denoted by ω, a transfer matrix is formulated
to relate the state variables at two side for the station. For a
free body diagram of the disk as shown in figure 3, the transfer
matrix relation is expressed in equation 16 [11].

Figure 3: Free body diagram for disk element
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This above equation 16 can be express as equation 17, where
[P ]i is a point matrix which is a transfer matrix which relates
the state variables at two sides of the disk. For a concentrated
mass considered for the Euler-Bernoulli beam, the mass
moment of inertia Id is zero.

{S}L
i = [P ]i {S}R

i (17)

For an elastic support with stiffness k as shown in figure 4, the
the transfer matrix relation is expressed in equation 18 which
is further expressed as equation 19 [11].

Figure 4: Free body diagram at spring support
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In equation , [U ]i is a transfer matrix for elastic support relates
the state variables at two sides of the same.

{S}L
i = [U ]i {S}R

i (19)

2.5 Overall Transfer Matrix and Application of
Boundary Condition

The overall transfer matrix for a hydrogenerator assembly is
determined by multiplying all the elementary transfer matrix
[11]. For the analysis, the hydro generator assembly shown
in figure 5, with respective dimensions and parameters is
considered. The discretization scheme with Euler-Bernoulli
beam is shown in figure 6.

Figure 5: Hydro Generator Assembly Considered For Analysis

For this scheme, the masses of four beam segments, with
lengths of 1.154 m, 0.870 m, 0.800 m, and 1.352 m, are
considered to be located at the midpoint of each respective
segment. In the case of the remaining segments, their masses
are assumed to be concentrated at the end of the respective
segments.
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Figure 6: Discretization Scheme for Hydro generator
assembly with Euler-Bernoulli Beam

The overall transfer matrix for this scheme can be expressed
with equation 20. The naming for the stations and beams are
as per the figure above.

{S}R
11 =[U ]11 [F ]11 [P ]10 [F ]10 [P ]9

[F ]9 [P ]8 [F ]8 [P ]7 [F ]7

[P ]6 [F ]6 [P ]5 [F ]5 [P ]4

[F ]4 [P ]3 [F ]3 [U ]2 [F ]2

[P ]1 [F ]1 [P ]0 {S}L
0

(20)

Again, with the Timoshenko beam element, figure 7 shows the
discretization scheme for which the overall transfer matrix is
expressed as equation 21.

Figure 7: Discretization Scheme for Hydro generator
assembly with Timoshenko Beam

{S}R
8 =[U ]8[F ]8[F ]7[F ]6[F ]5[P ]4

[F ]4[F ]3[F ]2[U ]1[F ]1[P ]0{S}L
0

(21)

In the context of hydro generator assembly lines, a prevalent
boundary condition involves a free-free scenario, wherein the
bending moment and shear force at both ends are maintained
at zero. After the application of boundary conditions on
equation 20 and equation 21 and expansion of the matrices,
equation 22 is obtained. Single equation for expanded form is
shown because the boundary condition and size of the matrix

is same for both the scheme.The subscripts 12 shall be used
while solving for Euler beam scheme and 8 shall be used while
solving for the Timoshenko beam scheme.
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On multiplication and some re-arrangements, one obtains
equation 23 and equation 24.{
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Equation 23 represents an eigenvalue problem. Therefore, to
obtain a non-trivial solution, it’s necessary for equation 25 to
equate to zero. Equation 25 is a function of natural frequency
for transverse vibration ω. Hence, the natural frequencies
associated with the bending vibration are the solutions of
Equation 25. The first solution of Equation 25 that satisfy
equation signifies the first mode natural frequency, second
signifies the natural frequency for second mode and so on.

f (ω) =
∣∣∣∣ t31 t32

t41 t42

∣∣∣∣= 0 (25)

By choosingϕL
0 = 1 as the reference value for displacement, all

the normalized state variables at station 0 are calculated and
mode shape diagram is prepared.

3. Result and Discussion

For the discretized scheme shown in above figures, the natural
frequency of transverse vibration for first three modes are
calculated considering both euler and timoshenko beam. The
dimensions shown in the figure 6 and figure 7 are in
mi l i meter s. Since, the material for the shaft/beam is mild
steel, the modulus of elasticity E is taken as 210GPa and the
Poisson’s ratio µ is taken as 0.3. The shear deformation
coefficient k̂ is calculated according to the mathematical
relation available in reference [11].Maple 2021 is used as a
mathematical tool to evaluate the natural frequency.As the
disks are considered thin, the diametrical mass moment of
inertia Id is taken as half of the polar mass moment of inertia
Ip . The natural frequency calculated using euler beam and
timoshenko beam model for the first three mode are shown in
the table 1.

Table 1: Natural Frequency calculated for botm Euler and
Timoshenko Beam Scheme

Mode
Natural Frequency in Hz

Euler Beam
Model

Timoshenko
Beam Model

1 17.46 17.32
2 57.83 56.12
3 81.65 82.07
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From above table, it can be noticed that the natural frequency
calculated from the Timoshenko beam model are almost close
to the Euler beam model for all three modes. This may be due
to the lumped mass assumption considered for the uniformly
distributed mass of the beam segment is almost close to the
optimum discretization scheme, however, for other problems,
the assumption technique applied in this paper might not be
suitable and more point needs to be considered. Timoshenko
beam model yields slightly lower value due to the
consideration of the rotary inertia and shear deformation. For
these above three modes of vibration, the normalized mode
shape are plotted by calculating the normalized transverse
displacement at each stations. The modes shape for first three
modes for euler beam model is shown in figure 8 and the
same for timoshenko beam model is shown in figure 9.

Figure 8: First three mode vibration mode shape considering
Euler Beam

Figure 9: First three mode vibration mode shape considering
Timoshenko Beam

From figure 8 and figure 9, it can be observed that the bending
vibration mode are similar in nature for both the cases. The
nodal points and antinodal points are at almost same location.

3.1 Frequency Analysis in SimScale and Comparison
with Mathematical Approach

The dynamic analysis of the hydro generator assembly for free
vibration is conducted using the finite element software
SimScale. For an analysis, 3D model is prepared in Ansys
Spaceclaim. To simulate the rotor winding and turbine runner,
equivalent disks with identical mass and polar moment of
inertia to the original components are modelled. The stiffness
is provided as an Elastic Support boundary condition in the
respective faces of the shaft. First three transverse vibration
mode are considered in this paper. From the simulation, the
natural frequency obtained for first three modes are shown in
table 2.

Table 2: Natural Frequency obtained form SimScale for first
three transverse vibration mode

Mode Natural Frequency in Hz
1 20.01
2 49.9
3 90.54

The mode shape obtained for above three natural frequency
are shown in figure 10, figure 11 and figure 12.

Figure 10: Vibration mode shape for frequency of 20.01 Hz

Figure 11: Vibration mode shape for frequency of 49.9 Hz

Figure 12: Vibration mode shape for frequency of 90.54 Hz

From the results obtained with mathematical approach and
the results obtained from the SimScale, it can be noticed that
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the results are almost close to each other for all three modes.
However, it is also noticed that the results obtained from the
Timoshenko Beam Scheme is more closest to the results from
SimScale. This is due the the consideration of uniformly
distributed mass of shaft and rotary inertia in the transfer
matrix. Mode shapes natures are similar in Mathematical
approach and SimScale. There is a mimimal percentage
variation in results from mathematical approach to the Finite
element approach. This may be due to the assumption of disk
as a thin disk and assumption of single plane vibration How
ever, there will be the effect due to thickness of the disk and
the coupled plane vibration.

4. Conclusion and Future Recommendation

The natural frequency of a transverse vibration for a
hydro-generator assembly is calculated using transfer matrix
method involving the Euler-Bernoulli Beam and Timoshenko
Beam . From the results obtained from the mathematical
approach, it is noticed that the results obtained are close to
the results obtained from FEM. The natural frequency
calculated from the Euler beam models for the first three
modes are 17.46 Hz, 57.83 Hz and 81.65 Hz and the same
calculated with timoshenko beam models are 17.32 Hz, 56.12
Hz, 82.07 Hz. From the numerical model with Simscale, the
natural frequency obtained are 20.01 Hz, 49.9 Hz and 90.54 Hz.
Mode shapes obtained from the mathematical models and
Simscale also exhibits similar nature. Thus, it can be
concluded that the mathematical model presented in this
paper can be efficiently employed for the natural frequency
calculation of the hydro-generator assembly. Besides runner
and rotor, the generator assembly also consists of the Fans,
flywheel and exciters as a disk elements. Upon availability of
the data regarding the mass and inertial, point matrices can
be formulated for these items by a methodology described in
this research and can be assembled in the overall transfer
matrix for the calculation of the frequency. Again, this method
is also capable of handling multiple number of bearing
supports present in the assembly. Along with the free-free
boundary condition, boundary condition for a simply
supported and overhung assembly can also be incorporated in
this method efficiently. As a future work, torsion mode can be
added in transfer matrix and oil damping characteristic can
also be added in the transfer matrix of the supports. Again, the

thickness parameter of disk can also be added in the point
matrix.
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