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Abstract
The world’s energy outlook is shifting markedly towards sustainability and eco-friendliness. This entails integrating renewable
sources like solar and wind power into conventional grids, bringing advantages like lower emissions and reduced fossil fuel
dependency. Unlike stable fossil fuel plants, renewable generation varies due to weather-driven intermittency, affecting the voltage
stability and loading capacity of the grid. This study focuses on evaluating the GSA and load margin of the system, employing the
IEEE 9-bus system and the INPS of Lumbini Province. Results reveal a 1.46% system power loss, concentrated at Bus 5 due to
minimal voltage levels. The study employs optimal power flow equations to assess load margins, with the most probable margin
emerging at approximately 1.25 times the existing load for the analysis of Lumbini Province. Sensitivity analysis identifies key
substations, with Butwal Grid SS deemed most influential. In Lumbini province, wind generation exhibits distinct characteristics
across locations, while load flow analysis indicates varying voltage levels in substations. Correlation analysis highlights strong
positive correlations among solar projects and low correlations with wind generation, emphasizing coordination opportunities. High
load margin values affirm reliable power supply and sensitivity analysis underscores the crucial role of specific substations in power
distribution. The PV and QV curves reveal potential voltage level drops with increased active and reactive loads and improvement in
the voltage profile with the penetrations of RES.
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1. Introduction

The global energy landscape is undergoing a significant
transformation towards a more sustainable and
environmentally friendly future. This transformation involves
incorporating renewable energy sources, such as solar and
wind power, into traditional power systems. These sustainable
sources provide various advantages, such as a decrease in
greenhouse gas emissions and reduced dependence on fossil
fuels.

Renewable energy generation differs from conventional fossil
energy generation in that it is very random and intermittent,
having a substantial impact on branch currents, bus voltages,
and grid losses. Unlike conventional power plants, which can
provide a steady output, renewable energy generation is highly
dependent on factors like weather conditions and sunlight
availability. As a result, the power system’s scheduling and
control have grown increasingly challenging and intricate [1].
The growing adoption of renewable energy generation is now
making its way into the power grid, leading to a notable rise in
the unpredictability of the power system.

Hence, when integrating extensive renewable energy sources
into the grid, it becomes imperative to conduct uncertainty
assessments on the power system for monitoring and averting
voltage collapse. In order to guarantee the dependable and
effective operation of modern power systems, power system
voltage stability is a critical factor. Power system voltage
stability evaluation has become more difficult and
complicated as Renewable Energy Sources (RESs) like wind

and solar power are being integrated more and more into
power grids. This is because RESs show correlated variabilities
and are highly reliant on environmental variables, both of
which have a big impact on the stability of the voltage in the
power system. The voltage stability problem in power systems
can result in voltage collapse, system instability, and
eventually blackouts. Determining the voltage stability of
power systems under various working scenarios, including the
integration of RESs with correlated variabilities, is therefore
crucial.

In recent years, several investigations have been carried out
on stochastic power system challenges, including studies
related to probabilistic load flow and small signal stability
[2, 3, 4, 5, 6, 7]. Given the nature of variables, stochastic
approaches have been developed to assess the erratic
performance of power systems because conventional
deterministic methods are unable to accurately capture their
unique characteristics. The sensitivity of load margins with
regard to several arbitrary parameters was calculated in [8, 9].
In paper [10], a global sensitivity analysis (GSA) method is
suggested to rank the importance of renewable energy
variables that will have an impact on the voltage stability of
power networks with the determination of load margin.

In this paper, an efficient global sensitivity analysis (GSA)
technique is suggested to evaluate the priority of renewable
energy variables that will have an impact on the voltage
stability of power systems. For this first, a probabilistic model
for calculating the load margin while taking into account
renewable energy generation will be presented. The sensitivity
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index was derived for assessing the effects of such variables,
and GSA was then applied to models with linked random
input variables. The research will model the probability
density function of the renewable energy sources i.e. PV and
wind and also the load for the IEEE-9 bus system. The
proposed method will then be tested using the IEEE 9-bus
systems in this study.

2. Material and Methods

The various methods applied in the course of study are
discussed in this section.

2.1 Obtain probability models of random input
variables

The fluctuations in the direction of active load growth follow a
normal distribution, with the associated probability
distribution function (PDF) depicted in Eq. 1 [10].
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The reactive power of the load can be similarly characterized
to maintain a consistent power factor.

bQi = bPi tanαL (2)

In wind power generation, the Weibull model is frequently
employed to depict wind speed, as indicated in the PDF
outlined in [11].

f (v) =
(

k

c

)( x

c

)k−1
exp

(
−

( x

c

)k
)

, v ≥ 0 (3)

Where, k, c: Parameters of a Weibull distribution; x: Input
random variable vector

The output powerpw of WT is affected by wind speed as follows
[4]:
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Wind power generators are typically linked directly to the
electrical grid. A wind turbine (WT) operating at a constant
power factor can be simplified as a PQ bus within the grid.
The reactive power, denoted as qw , for the WT can be
expressed as follows:

qw = pw tanαw (5)

Photovoltaic (PV) electricity production relies on solar
irradiance r , which is characterized by a Beta distribution.
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Where, a, b: Parameters of a Beta distribution.

The active power generated by the photovoltaic system, Ps, is
contingent upon solar irradiance and can be represented as
follows:

Ps = r Aη (7)

Where, r = solar irradiance (W/m2); A=light-receiving area
(m2); η= photoelectric conversion efficiency (%)

2.2 Determination of Load Margin

2.2.1 Objective Function:

The optimization model is given as follows [10]:

M ax :λ (8)
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2.3 Generation of Correlated Samples

The Nataf inverse transformation approach is used to acquire
samples of power generation from renewable sources that
exhibit correlation. This methodology is depicted in Figure 1.

Figure 1: Flowchart for generating samples of correlated
variables.
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2.4 Evaluation of the GSA indices

The calculation process is illustrated in Figure 2.

Figure 2: Calculation of the GSA

2.5 Tools

Python programming language is used for the overall process
of determination of correlated variables and load margin.

3. Result and Discussion

With the aforementioned methodology, the analysis for the
IEEE-9 bus system and the INPS for Lumbini Province was
carried out the results obtained during the process are
described herewith.

3.1 IEEE-9 bus system

The results obtained from the analysis of IEEE-9 bus system is
described in this section.

3.1.1 Wind Model

The probability distribution curve for the wind velocity is
derived with the Weibull model is shown in Figure 3. The
values of k and c are considered to be 2.06 and 7.41
respectively [10]. The results indicate that the highest
probability of the occurrence of wind is with a velocity of
around 6 m/s. Also, there is a very low probability of the
occurrence of a velocity higher than 20 m/s. This information
is crucial for designing wind turbines and assessing the
potential energy production from a wind farm.

3.1.2 PV Model

Also, the sample of level of solar irradiance is obtained from
the beta distribution as in the Figure 4. The parameters a and b

Figure 3: PDF of wind velocity using Weibull model

are considered to be 2.06 and 2.5 respectively. The probability
of occurrence of irradiance 0.4 has the highest probability.

Figure 4: PDF of solar irradiance level using beta distribution

3.1.3 Load Model

Figure 5 presents the probability density function of the load
model. The figure indicates the maximum chance of
occurrence of load around the mean of the loads of the IEEE-9
bus system with the normal distribution. The probability of
the load ranges from 50MW to 150MW, with a higher value of
the probability of occurrence.

Figure 5: PDF of load for IEEE-9 bus system
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3.1.4 Load Flow Analysis

The load flow was performed using the power flow equations
and the voltage profile of the system is depicted in Figure 6.
The loss on each of the branches is shown in Figure 7. Line
3 (Bus5 - Bus7) is the most loss-occurring part of the system.
Overall, the system suffers an active power loss of 1.46%.

Figure 6: Bus voltages for IEEE-9 bus system

Figure 7: Loss in the branches of IEEE-9 bus system

3.1.5 Load Margin

Figure 8 illustrates the probability density function of the load
margin with the correlated variables. The graph indicates that
the probability of the system is most stable with the load
increment by 20%. As the load increases beyond the factor of
1.3, there is less chance for the system to be stable.

Figure 8: PDF of load margin

3.1.6 Sensitivity Analysis

The sensitivity indices of the different variations of load on the
IEEE-9 bus system are compared in Table 1. The sensitivity of
the active load on bus 8 is the highest followed by that on bus
5 and then bus 6. The reactive power of the loads has a lower
significance on the overall stability of the system.

Table 1: Ranking of the load parameters of IEEE-9 bus

Variable Sensitivity Ranking
Active Power on Bus 5 0.221 2
Active Power on Bus 6 0.188 3
Active Power on Bus 8 0.529 1
Reactive Power on Bus 5 0.009 5
Reactive Power on Bus 6 0.005 6
Reactive Power on Bus 8 0.03 4

Figure 9 presents the probability density function of the load
margin for different cases considering various loads constant.
The system has the highest probability of being stable with
active power on bus-8 constant.

Figure 9: PDF at various cases of load in IEEE-9 bus

3.1.7 PV-QV curves

Figure 10 represents the P-V curve for the load buses on buses
5, 6, and 8 considered. The figure shows that on increasing the
load on the specific bus, the system will become unstable if
the load is increased by around 450MW.

Figure 11 represents the Q-V curve for the load on the load
buses considered. The figure represents that on increasing the
load on the specific bus, the system will become unstable if
the reactive load is increased by around 275MVar.

3.2 INPS of Lumbini Province

The results obtained from the analysis of INPS of Lumbini
Province is described in this section.

3.2.1 Evaluation of Wind Parameters

The study in Lumbini province evaluates wind generation,
analyzing recorded wind velocities to determine ’k’ and ’c’
parameters using the Weibull distribution model. Figure 12
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Figure 10: PV curve with active power variations in Load bus

Figure 11: QV curve with reactive power variations in Load
bus

presents detailed analyses of Purungchheda, Dang, Koilabas,
and Sitapur, showcasing ’k’ values indicating wind generation
consistency. Purungchheda, Dang, maintains ’k’ values from
2.02 to 2.24, suggesting reliability with moderate variability.
Koilabas exhibits consistent patterns with ’k’ values between
2.15 and 2.27. Sitapur’s fluctuating ’k’ values (1.99 to 2.26)
imply broader distribution and higher variability. ’c’ values
signify energy potential, with Purungchheda, Dang, indicating
higher wind speeds (5.47 to 5.93). Koilabas and Sitapur exhibit
moderate to high energy generation potential.

Figure 12: Seasonal k and c values for wind generation
locations

3.2.2 Evaluation of PV Parameters

The study determines stochastic variables for PV and wind
generations, analyzing parameters season-wise and overall.
Figure 13 illustrates these parameters for solar projects,
categorized by seasons and an ’Overall’ column consolidating
’a’ and ’b’ values, providing insights into the distinctive
characteristics of solar power generation. The interplay
between ’alpha’ and ’beta’ values reveals stability, reliability,
and predictability, aiding energy planners in understanding
challenges and opportunities associated with each solar
installation. Variations in ’a’ and ’b’ parameters across seasons
indicate seasonal dynamics, with higher ’a’ values suggesting
stable generation and lower ’a’ values indicating greater
variability.

3.2.3 Load Flow Analysis

The load flow analysis of Lumbini province’s electrical system
reveals varying voltage levels at substations, as indicated in
Figure 14, ranging from 0.817 to 0.99 pu. Jhumruk PH and
Chandrauti Grid SS show the highest levels (0.99 and 0.976
pu), indicating well-regulated and stable voltage supply, while
lower levels at Bastu SS, Lumbini SS, and Parasi SS (0.817, 0.826,
and 0.8265 pu) suggest potential needs for voltage regulation
measures.

Figure 13: Seasonal a and b values for PV generation locations

Figure 14: Voltages of substation in Lumbini Province

Similarly, the line loss is dominant in the line from the Butwal
grid substation to the Dhakdahi substation with a power loss of
10.44%. Similarly, the 33kV line from Old Nepalgunj to Nanpara
suffers a loss of 8.97% while the line from Chandrauta – Jeetpur
Tapping suffers 8.07% of the total sending power.

836



Proceedings of 14th IOE Graduate Conference

3.2.4 Correlation Matrix and Load Margins

Most solar projects exhibit strong positive correlations ranging
from 0.8 to 1, indicating a close relationship between their
power generation outputs. For example, "Bishnu Priya Solar
Farm Project" shows strong positive correlations with almost
all other solar projects, suggesting shared influences from
similar weather conditions or geographical factors.
Conversely, correlations between wind generation locations
("Purungchheda, Dang," "Koilabas," and "Sitapur") and solar
projects are generally low, ranging from -0.01 to 0.19, implying
that wind and solar generation in these locations operate
somewhat independently.

Figure 15 illustrates the impact of renewable energy sources
(RES) on overall system stability in Lumbini province, with
"Uncorrelated" and "Correlated" indicating the degree of
independence among RES. The load margin values, ranging
from 0.94 to 1.53, consistently exceed 1, reflecting a reliable
and stable power supply in the region, with variations in the
proportions of renewable energy sources over time. Despite
slight differences in energy generation, both Uncorrelated and
Correlated RES contribute to a consistently stable power
supply, as reflected in load margin values consistently above 1.

Figure 15: PDF of load margin for the system of Lumbini
province for correlated and uncorrelated generation

3.2.5 Sensitivity Indices

Table 2 displays sensitivity indices and rankings for active
power variation of major five substations, highlighting
"Butwal Grid SS" as the most influential with a high sensitivity
index of 0.3684, indicating its critical role in overall active
power management. "Bhairahawa SS" follows with a
sensitivity index of 0.0785, emphasizing its importance, while
"Parasi SS" ranks third with a sensitivity index of 0.0631,
indicating its significant role in maintaining stable active
power levels. In contrast, substations like "Hapure Gird SS,"
"Kusum Grid SS," and "Taulihawa SS" have lower sensitivity
indices, suggesting a relatively minor impact on active power
variations within the province.

Figure 16 presents Probability Density Function (PDF) graphs
for load margin values under deterministic scenarios (Butwal
Grid, Bhairahawa SS, and Parasi SS). The Butwal Grid scenario
exhibits a gradual increase in PDF with a peak around 1.28,
suggesting higher stability, while Bhairahawa SS shows a

Table 2: Ranking of the load parameters of INPS at Lumbini
Province

Substation Sensitivity Index Ranking
Butwal Grid 0.3684 1
Bhairahawa 0.0785 2
Parasi 0.0631 3
Bardaghat Grid 0.0412 4
Jeetpur 0.03 5

pronounced peak around 1.27 with higher variability. Parasi
SS has a peak around 1.2 with a skewed distribution toward
higher load margin values. These variations indicate
differences in load margin probability distributions,
highlighting Butwal Grid’s sensitivity and contribution to
overall system stability. The trend is followed by Bhairahawa
and Parasi substation scenarios in the same order of
sensitivity.

Figure 16: PDF of load margin for the system of Lumbini
province for correlated and uncorrelated generation

3.2.6 PV-QV Curves

Figure 17 depicts the Active Power-Voltage curve, revealing
the dynamic relationship between voltage levels and active
power for Butwal, Bhairahawa, and Parasi substations; notably,
Butwal consistently exhibits higher active power values across
the voltage range, indicating a characteristic trend of voltage
decrease with increasing active power, while Bhairahawa and
Parasi, having smaller conductors, experience more significant
voltage drop.

Figure 18 demonstrates the Reactive Power-Voltage curves for
Butwal, Bhairahawa, and Parasi substations, with Butwal
displaying a broader range of reactive power increment due to
higher transmission line capacity, resulting in a more
significant voltage drop compared to Bhairahawa and Parasi
substations and some improvement in voltage profile and
power carrying capacity with the RES.

4. Conclusion

The results unveiled a 1.46% power loss with minimum
voltage at Bus 5, and load margin analysis identified a
probable value around 1.2 times the existing load for IEEE-9
bus system. In case of INPS of Lumbini Province, Sensitivity
analysis pinpointed Butwal Grid SS as the most influential
substation for active power variation, underscoring its critical
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Figure 17: P-V curve for the variation of load in the major
substations

Figure 18: Q-V curve for the variation of load in the major
substations

role in power distribution. Wind generation analysis in
Lumbini province revealed distinctive patterns across
locations, emphasizing the uniqueness of each area’s wind
characteristics. Correlation analysis indicated strong positive
correlations among solar projects, while load margin values
consistently exceeding 1 highlighted the reliability of Lumbini
Province’s power supply. The study offers a foundation for
future research on time-dependent generation variations and
expanding optimal power flow analysis to larger and more
complex power systems.
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