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Abstract
The disk attached to a shaft is the basic component of various rotating mechanical equipment. When in use, these are bent and
twisted. The coupled effect of lateral and torsional vibration is a frequent cause of system failure, necessitating its study in order
to prevent future failures. Two rigid disks mounted to both ends of a double-overhung flexible shaft system are investigated for
coupled torsional-transverse vibration. The equations of motion were created by applying the kinematic restrictions and the Hamilton
equation to the energy expressions. The governing equation is divided into various orders when the displacement is expressed as a
perturbation series. This demonstrated second and higher-order torsional and transverse term interactions. In order to comprehend
the connection better, rigid.
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1. Introduction

An area of study within the boarder subject of mechanical
engineering is transverse vibration modal analysis of
centrifugal blowers with overhung shaft bearing rotor
orientation. In commercial and industrial contexts,
centrifugal blowers are machinery used to move air or other
gases. These devices typically consist of a rotor that is
operated by an electric motor and spins rapidly. The
arrangement of the shaft and bearings used to support the
rotor in the blower is referred to as the “overhung shaft
bearing rotor orientation.”

The transverse vibration of the modal analysis of Double
overhung centrifugal blower mainly focuses on the
development of mathematical models to predict the mode of
vibration and their respective natural frequencies and
experimental investigation of the transverse vibration
behaviour of overhung centrifugal blowers. A study by (Hao)
used the Transfer Matrix Method to establish a numerical
model of air blower systems and found out mode shape,
critical speed and unbalanced reaction[1]. S L Ajit Prasad
investigated a spinning mechanical system with an
imbalanced rotor installed on an overhanging shaft to
determine its vibrational properties[2]. More studies about
the influence of impeller blade thickness and rotating speed
on the performance of the impeller through an experimental
and numerical analysis[3]. Sailendra Shah used Transfer
Matrix to perform modal analysis of the offset rotor shaft of a
large centrifugal fan and compared the result with Numerical
simulation from ANSYS Workbench[4].

This research work focuses on the development of an equation
of motion using the Hamilton Principle for double overhung
centrifugal blower and a perturbation series would be
employed to decouple the first-order and second-order
equation and identify the interaction of transverse vibration

on torsional vibration and vice versa.

2. Methodology

The following research methodology is adopted for this paper.
From libraries and the internet, we collected the prior
research studies and other pertinent publications. We used
the previous thesis from the Institute of Engineering and their
access to many foreign magazines. The FD fan utilized for the
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cyclone separator in the Eastern Cosmos Cements was used to
collect data on measurement and material properties. A
mathematical model was created, and perturbation series
were employed to decouple the equations for the study of the
interaction of transverse vibration on torsional vibration and
vice versa. A simulated modal analysis of the FD fan with the
same geometry and material was performed using ANSYS
Workbench. The twin overhung rotor shaft FD fan modal
analysis also made use of ANSYS. The results of the numerical
analysis and the simulation work were compared and verified
and operational ranges of the speed of the fan were thus
obtained.

3. Mathematical Modeling

3.1 Coordinate system

Let the fixed coordinate system OXYZ be an inertial frame
of reference. An element of the shaft is considered to be a
disk of infinitesimal thickness and is located with the help of
displacement and rotation[5].

R321(;,θ,Ψ) = R1(;)R2(θ)R3(ψ) (1)

R1(;) =
 1 0 0

0 cos; sin;
0 −sin; cos;

 (2)

Figure 2: Double overhung System

R2(θ) =
 cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ

 (3)

R3(ψ) =
 cosψ sinψ 0

−sinψ cosψ 0
0 0 1

 (4)

R321 =
 CθCψ CθSψ −Sθ

−CφSψ+CψSθSφ CψCφ+SψSθSφ SψCθ
SφSψ+CφSθCψ −SφCψ+CφSθSψ CφCθ


(5)

Here cosine and sine are represented by C and S respectively.

3.2 Velocity Expression

The vector sum of time gives the expression for the angular
velocity of the system [6].

ω= ψ̇+ θ̇+;̇ (6)

x, y and z components of angular velocity can be identified as
[7]: ωx

ωy

ωz

=
 φ̇− ψ̇sinθ

θ̇cosφ+ ψ̇cosθ
−θ̇ sinφ+ ψ̇cosθ sinφ

 (7)

x, y and z components of Linear velocity when velocity along
x-axis is ((̇u) = 0 is as [8].Vx

Vy

Vz

=
 vψ̇− (wθ)φ̇

vφ̇cosθ+wψ̇sinθ
−vφ̇sinθ+wψ̇cosθ

 (8)

3.3 Kinematic Constraints

A shaft longitudinal axes are aligned with the x-axis and
vibration is experienced along the perpendicular axes y and
z.u,v and w are displacement along x,y and z axes respectively
where displacement along x-axes is taken as zero. θ, φ and ψ
is the rotation along the x,y and z axes respectively. The
relation between θ, ψ and their first and second derivative
with respective displacement is given by [9]:

θ = ∂w

∂x
; θ̇ = ∂ẇ

∂x
= (ẇ)′ ; θ̈ = ∂ẅ

∂x
= (ẅ)′ .

ψ=−∂v

∂x
; ψ̇=−∂v̇

∂x
= (v̇)′ ; ψ̈=−∂v̈

∂x
=− (v̈)′ . (9)

3.4 Kinetic and potential energy

3.4.1 Kinetic energy of shaft

The kinetic energy of the shaft for torsional and lateral
vibrations is given as [10].

T =1

2
ρA

∫ L

0
V2dx+ 1

2
Ip

∫ L

0
w2

xdx+
1

2
Id

∫ L

0

(
w2

y +w2
z

)
dx

(10)

T =1

2
ρA

∫ L

0

[
ẇ2 + v̇2 + v̇2θ2ψ2 + v̇2ψ2 + ẇ2θ2]dx

+ 1

2
Ip

∫ L

0

[
Ω2 −2Ωθψ̇

]
dx+ 1

2
Id

∫ L

0

[
θ2+ ψ2]dx

(11)

where, V 2 = ẇ2 + v̇2 + v̇2θ2Ψ2 + v̇2Ψ2 + ẇ2θ2

3.4.2 Potential Energy of shaft

The potential energy of the shaft for transverse deflection and
the torsional condition is as follows [11].

U =EI

2

∫ L

0

[(
∂2u

∂x2

)2

+
(
∂2v

∂x2

)2]
dx+

GJ

2

∫ L

0

(
∂φ

∂x

)2

dx

(12)
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3.4.3 KE of disk 1

Kinetic energy for the disk at the location at X=0 is given as
follows [11].

Td1 =
1

2
Md1

(
v̇2 + ẇ2)∣∣∣∣

x=0
+

1

2
Ipd1ω

2
x

∣∣∣∣
x=0

+ 1

2
Idd1

(
ωy

2 +ωz
2)∣∣∣∣

x=0

(13)

3.4.4 KE of disk 2

Kinetic energy of a diak at location x=L is given as follows [11].

Td2 =
1

2
Md2

(
v̇2 + ẇ2)∣∣∣∣

x=L
+

1

2
Ipd2ω

2
x

∣∣∣∣
x=L

+ 1

2
Idd2

(
ωy

2 +ωz
2)∣∣∣∣

x=L

(14)

3.5 Equation of Motion and Perturbation series

Applying Hamilton’s principle to energy expression results to
Equation of motion and boundary conditions for the system.
For a clear understanding of the nature of the equation of
motion derived, we need to apply perturbation. Perturbation
helps to decouple the equation into first-order, second-order
and higher order equations.

v = εv1 +ε2v2 +·· ·+εnvn +·· · (15)

w = εw1 +ε2w2 +·· ·+εnwn +·· · (16)

θ = εθ1 +ε2θ2 +·· ·+εnθn +·· · (17)

3.5.1 First order equation

After substituting values from equations (15),(16) and (17) in
the equation of motion, we can get the following three
equations.

(E I v ′′
1 )′′+ρ ¨Av1 − (Id v̈1

′)′− (IpΩẇ1
′)′ =−Md1v̈1δ(x −0)

−Md2v̈1δ(x −L)+ (Idd1v̈1
′)′δ(x −0)+ (Idd2v̈1

′)′δ(x −L)

+ (Ipd1Ωẇ1
′)′δ(x −0)+ (Ipd2Ωẇ1

′)′δ(x −L)

(18)

(E I w ′′
1 )′′+ρ ¨Aw1 − (Id ẅ1

′)′+ (IpΩv̇1
′)′ =

−Md1ẅ1δ(x −0)−Md2ẅ1δ(x −0)+ (Idd1ẅ1
′)′

δ(x −0)+ (Idd2ẅ1
′)′δ(x −L)− (Ipd1Ωv̇1

′)′δ(x −0)

− (Ipd2Ωv̇1
′)′δ(x −L)

(19)

(G Jφ′
1)′− Ip φ̈1 = Ip d1φ̈1δ(x −0)+ Ip d2φ̈1δ(x −L) (20)

There is no torsional term in transverse vibration equation
and vice versa.this shows that there is no interaction between
transverse and torsional vibration.

3.5.2 Second order Equation

The first-order equation after decoupling is given as follows.

(E I v2
′′)′′+ρAv̈2 − (Id v̈2

′)′− (IpΩẇ2
′)′ = (Ip φ̈1w1

′)′

+ (Ip φ̇1ẇ1
′)′−Md1v̈2δ(x −0)−Md2v̈2δ(x −L)

+ (
Idd1v̈2

′)′δ(x −0)+ (Idd2v̈2
′)′δ(x −L)+ (Ipd1φ̈1w ′

1)′

δ(x −0)+ (Ipd2φ̈1w ′
1)′δ(x −L)+ (Ipd1Ωẇ2

′)′δ(x −0)

+ (Ipd2Ωẇ2
′)′δ(x −L)++(Ipd1φ̇1ẇ1

′)′δ(x −0)

+ (Ipd2φ̇1ẇ1
′)′δ(x −L)

(21)

(E I v
′′
2 )

′′ +ρAẅ2 − (Id ẅ2
′)′+ (IpΩv̇2

′)′+ (Ip φ̇1v̇1
′)′

=−Md1ẅ2δ(x −0)−Md2ẅ2δ(x −L)+ (Idd1ẅ2
′)′

δ(x −0)+ (Idd2ẅ2
′)′δ(x −L)− (Ipd1Ωv̇2

′)′δ(x −0)

− (Ipd2Ωv̇2
′)′δ(x −L)− (Ipd1φ̇1v̇1

′)′δ(x −0)

− (Ipd2φ̇1v̇1
′)′δ(x −L)

(22)

(G Jφ′
2)′− Ip φ̈2 =

Ip
∂

∂t
(v̇1

′w ′
1)+ Ipd1φ̈2δ(x −0)+ Ipd2φ̈2δ(x −L)+

Ipd1
∂

∂t
(v̇1

′w ′
1)δ(x −0)+ Ipd2

∂

∂t
(v̇1

′w ′
1)δ(x −L)

(23)

Equation (21), (22) and (23) shows that there is torsional term
in the first two transverse equation and there is transverse
term in the third torsional vibration equation. This shows that
we can easily decouple equations of transverse vibration and
torsional vibration separately. The nature of the equation
shows that there is interaction of transverse vibration in
torsional vibration and vice versa.

4. Analytical Solution

for the solution of the first-order equation, the polynomial
function for the mode shape is identified using the assumed
mode method. The polynomial function after applying
boundary condition for the double overhung condition is
given by [12].

;= x6 −3Lx5 + 5L2

2
x4 − L5

2
x + 483L6

4096

Figure 3: Mode shape analytically
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The mode shape of the double overhung system shows that
displacement is maximum at the middle and end of the shaft.
Displacement at the end of the shaft depends upon the mass
of both disks.

4.1 Equivalent System parameter

Applying the orthogonality condition, equation of motion for
transverse vibration can reduce to a couple system of ODE
from couple system of PDE as [13]:

MnV̈n(t )+CnẆn(t )+KnV (t ) = 0

MnẄn(t )−CnV̇n(t )+KnV (t ) = 0

4.1.1 Mass

Meq =−(ρA+Md1 +Md2
448819193

151145938944
L13+

(Id + Idd1 + Idd2)
10

7
L9

(24)

4.1.2 Damping Constant

Ceq =−Ω(
Ip + Ipd1 + Ipd2

) 10

7
L9 (25)

4.1.3 Stiffness

Keq = 720 ·E I ·L5 (26)

4.1.4 Model Parameter

The parameters shown in Table 1 are considered for the
solution which was collected from the Eastern Cosmos
Cement PVT LTD, Morang.

Table 1: Model Parameters

Parameters Values
Diameter of shaft (ds) 0.075 m
Density of shaft material(ρ) 7860 kg/m3

Cross section of shaft(A) 0.0044 M2
Length of shaft(L) 0.9 m
Mass per unit length of shaft (m) 34.71 kg/m
Total mass of shaft(M) 31.24 kg
Shear modulus of shaft(G) 84 GPA
Modulus of Elasticity of shaft (E) 202 GPA
AMOI of shaft section(Id) 1.55×10−6 M4
polar AMOI of the shaft section (Ip) 3.11×10−6 M4
mass of Disk 1 (md1) 55.55 Kg
mass of Disk 2 (md2) 443.91 Kg
Diametrical MMOI of Disk 1 (Idd1) 0.358 kg m2

Diametrical MMOI of Disk 2 (Idd2) 0.624 kg m2

Polar MMOI of disk 1 (Ipd1) 40.07 kg m2

Polar MMOI of disk 2 (Ipd2) 79.9 kg m2

Rotating speed 2080 RPM
Rate of Flow (22702-42093) m3/h
Full Pressure 4181/3066 pa
Power 55 Kw

4.1.5 Mass

Applying parameter values in equation (24) gives equivalent
value of mass for given system.

M1eq =−8579.18

4.1.6 Damping Constant

Applying parameter values in equation (25) gives equivalent
value of damping constant in term of rotational speedΩ.

C1eq = 13649.29Ω

4.1.7 Stiffness

Applying parameter values in equation (26) gives equivalent
value of stiffness of the system.

K1eq = 3205702386

5. Simulation

Simulation work was done in ANSYS 2019R3 Workbench for
the validation of the mathematical model. The geometry was
prepared from the parameter of the force draft fan collected
from the Eastern Cosmos Cement. Followed by ANSYS
workbench automated Meshing. Remote displacement was
set to zero for all axis in both bearings. Velocity vector was
given to the whole system along the X-axis. Transverse
vibration along y-axis and z-axis were considered but
vibration along x-axis was set to zero for the system.

Figure 4: Geometry

6. Result and Discussion

The operating speed of the centrifugal fan is 2080 RPM(218
rad/sec). The critical frequency obtained from the analytical
solution is 3621 RPM (379 rad/sec) which is close to the 3532
RPM(369.76 rad/sec) value obtained from ANSYS. Error is in
the acceptable range of 2.45 per cent. This result shows that
the operating speed is in the range of the safe zone.
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Figure 5: ANSYS Campbell Diagram

Figure 6: Forward and Backward Whirl with Spin

7. Conclusion

The torsional flexure interaction of the shaft-disk system was
studied by modeling the shaft as a rotating Euler-Bernoulli
beam and the disk as rigid. The governing equations of the
system for coupled vibrations are found to be a coupled
system of partial differential equations. It is clearly shown that
the interaction of torsional and transverse vibration doesn’t
occur in first order and it is clearly seen in second order
equation. For a spin speed of 2080 RPM(218 rad/sec), the
Natural Frequency for first-order free transverse vibration is
found to be 27929 rad/s and 30203 rad/s. The critical
frequency for backward whirl is found to be 3621
RPM(379rad/s) and the forward frequency is above 379
rad/sec.
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