
Proceedings of 14th IOE Graduate Conference
Peer Reviewed

Year: 2023 Month: December Volume: 14
ISSN: 2350-8914 (Online), 2350-8906 (Print)

Evaluation of Different Satellite Precipitation Data for Eastern Region
of Nepal
Nitesh Sharma a, Vishnu Prasad Pandey b, Rocky Talchabhadel c

a Department of Civil Engineering, Pulchowk Campus, IOE, Tribhuvan University, Nepal
b Center for Water Resources Studies, Institute of Engineering, Tribhuvan University, Nepal
c Department of Civil Engineering, Jackson State University, USA
 a amrahsnitesh123@gmail.com, b vishnu.pandey@pcampus.edu.np, c rocky.talchabhadel@jsums.edu

Abstract
A sound understanding of spatiotemporal variation of precipitation is crucial for hydrological and water resources assessment.
Scarcity of ground-based rain gauge (GRG) station’s data and their sparse distribution in widely varying topography, like in Nepal, is
a challenge for developing hydrological model and utilize its potential for informed decision-making. Satellite precipitation products
(SPPs) can potentially overcome the challenge posed by insufficient and inconsistent GRG measurements. This research aimed to
evaluate the performance of four SPPs for eastern region of Nepal. Results revealed that PERSIANN-CDR SPP outperformed
other SPPs in terms of Probability of Detection and Critical Success Index in the eastern region of Nepal. However, it consistently
overestimated rainfall detection at all elevations and showed a significantly high negative PBIAS. CHIRPS SPP, on the other
hand, exhibited fewer false alarms than other SPPs for all elevation ranges but always underestimated rainfall detection. Notably,
TRMM and IMERG consistently showed higher false alarms for all elevation ranges. This study also observed that all the SPPs
underestimated the daily rainfall amount with an increase in elevation range, showing a high negative percentage bias.

Keywords
magnitude-based index , performance-based index , SPPS

1. Introduction

Precipitation is a crucial component of the hydrological cycle
and plays a significant role in sustaining human society and
natural ecosystems. However, extreme or high-intensity
precipitation can also trigger hydrological hazards such as
floods, landslides, debris flows, and soil erosion [1]. To predict
weather patterns and provide early indications of
high-intensity extreme events, it is crucial to monitor
precipitation patterns consistently and meticulously. The
availability of observational precipitation data with high
spatial and temporal resolutions is fundamental for the
accuracy and reliability of such monitoring [1]. Dealing with
the spatial and temporal variability of precipitation in
mountainous regions poses a formidable challenge due to the
complex topographic landscape, coupled with the intricate
interplay of technological and economic limitations [2].

Satellite Precipitation Products (SPPs) present a promising
avenue to address the constraints posed by the sparse
distribution of ground-based rain gauge stations in remote
and data-deficient areas like mountainous terrains [3]. These
products furnish a unique vantage point through the
maintenance of precipitation data on regular high-resolution
grids. However, SPPs inherently harbor systematic and
random biases that must be addressed before their seamless
integration into hydrological models [4]. A rigorous
performance evaluation becomes indispensable to gauge the
accuracy of these satellite-derived estimates. The utilization of
large-scale and spatially distributed hydrological models,
propelled by widely accessible SPPs, emerges as a potent
strategy to address the challenges of data scarcity in regions

heavily reliant on water resources [5, 6].The availability of
such granular data serves as an indispensable asset for water
resource planning and management, particularly in regions
where ground-based observational data are limited or not
available at all. Overall, the incorporation of SPPs holds a
promise as an avenue to enhance data collection, particularly
in complex terrains. The adoption of large-scale models
propelled by SPPs carries the potential to revolutionize water
resource management in areas beset by data scarcity,
ultimately facilitating informed and effective decision-making
processes. [7]. Within the Indian subcontinent and the
Himalayan region, including Nepal, earlier studies have found
that SPPs have the potential to address data scarcity and
complex terrain challenges [5]. Studies have shown that
different SPPs perform differently based on their geographical
location. Notably, TRMM, CHIRPS, MSWEP, and
PERSIANN-CDR have been found to be consistent with
ground-based precipitation measurements across different
landscapes, including mountainous, Tibetan, and Himalayan
regions [6]. One study highlighted the reasonable
performance of PERSIANN-CDR over various regions of Nepal
[8]. Another study (Khatakho et al., 2021)) highlighted the
varying performance of IMERG and TRMM in different
Nepalese river basins [9]. Similarly, another study highlighted
IMERG and TMPA’s capability of capturing precipitation
patterns and drought events in an acceptable range and
underestimation of mean annual precipitation in seven
provinces [1]. These findings suggest that SPP performance is
nuanced and location-dependent, emphasizing the need for
careful consideration when selecting SPPs for particular
regions. However, despite these promising findings, there is
still a lack of comprehensive research into the performance of
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SPPs within the intricate terrain and high-elevation regions of
Nepal. The selection of suitable SPPs for specific river basins
can significantly affect their effectiveness. This overall study
signifies the importance of evaluation of SPPs before their
application to various regions of Nepal.

2. Study Area

Koshi, Madesh, and Bagmati provinces are three recently
created provinces that make up Nepal’s eastern area. Our
study region included all 14 districts in the Koshi Province, as
well as 5 of the 8 districts in the Madesh Province and 5 of the
13 districts in Bagmati province. Our study covered 42,064km2,
which is 28.57% of Nepal’s total land area. This region includes
the Koshi River basin, which is entirely located on Nepali soil.
The region encompasses all of Nepal’s physiographic divisions
and the region’s climate ranges from tropical in the Terai
Plains and Low River Valleys to arctic on mountain summits.
The region’s diverse biodiversity is supported by the changing
climatic conditions that occur as altitude rises [10].
Precipitation also varies greatly, ranging from 207 mm in the
trans-Himalayan region to more than 3,000 mm in the Eastern
mountains and mid-mountains [11].The map of study area is
shown in figure 1.

Figure 1: Location of Study Area in Nepal

The sparse distribution of meteorological stations in the study
area and need of SPPs as an alternative of ground rain gauges
can be visualized from the figure 2.

Figure 2: Study Area with Meteorological Stations

Figure 2 shows 59 stations in the Eastern part of Nepal for an
area of 42,064 km2 which is quantitatively insufficient for
effective management of water resources and poses a
hindrance to proper research in that area.

3. Materials and Methods

3.1 Materials

Data preparation is a very important step for any study. The
accuracy of its results relies heavily on the quality and
completeness of the input data. Different types of data used
for this study is shown in Table1

Data Type Source Spatial Resolution
CHIRPS https://data.

chc.ucsb.edu/
products/
CHIRPS-2.0/

0.05° × 0.05°

PERSIANN http://chrsdata.
eng.uci.edu/

0.025°× 0.025°

IMERG https://gpm.
nasa.gov/data/
sources

0.1° × 0.1°

TMPA https://disc.
gsfc.nasa.gov/
datasets/TRMM_
3B42_7/summary

0.025° × 0.025°

Table 1: Satellite Dataset

3.1.1 Observed data

Observed data refers to daily time series data from 2000 to
2015, of the meteorological stations in the study area and was
collected from the data issued by The Department of
Hydrology and Meteorology (DHM) in Nepal, which is
responsible for collecting and providing climatic data for
various regions in the country.

3.1.2 CHIRPS data

The CHIRPS dataset is created by combining satellite
observations from TIR, atmospheric model rainfall fields from
NOAA’s Climate Forecast System, the Climate Hazards
Precipitation Climatology (CHPClim), the TRMM 3B42
product from NASA, and rainfall observations from national
and regional meteorological services. It is a high-resolution
(0.05°) rainfall dataset developed by the Climate Hazards
Group at the University of California, Santa Barbara and the
US Geological Survey (USGS) [12].

3.1.3 IMERG data

It is a gridded precipitation product that is coupled with G.P.M.
satellite observations. The GPM Core Observatory satellite,
which has dual-frequency rainfall radar as well as a
13th-channel passive microwave imager, is IMERG’s reference
standard for the intercalibration and merging of precipitation
estimates from individual passive microwave PMW satellites
within a constellation. IMERG offers a high resolution of 0.1°
every half-hour, spanning latitudes up to 60°. Three IMERG
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runs are offered, depending on the needs of the user. The
Early Run, which is accessible at a 6-hour delay for real-time
applications like hazard forecasting, is confined to rainfall
morphing only forward in time. The late run, which has an
18-hour delay for purposes like crop forecasts, employs both
forward and backward time evolution. The final run for
research applications is delayed by 4 months. Early and late
runs are climatologist adjusted, while the final run employs
monthly calibration to reduce bias. Furthermore, because of
the lag in data transfer, runs with longer delays will employ
more PMW estimations [13].

3.1.4 PERSIANN-CDR data

It is a high-resolution (0.25°) rainfall dataset created by the
Center for Hydrometeorology and Remote Sensing (CHRS) at
the University of California, Irvine, and is available at
https://chrsdata.eng.uci.edu/. It is a hybrid of Gridded
Satellite Data (GridSat-B1) from the International Satellite
Cloud Climatology Project (ISCCP) B1 Infrared Window
(IRWIN) Channel and (2) Global Precipitation Climatology
Project (GPCP) v2.2. The PERSIANN-CDR uses artificial neural
network classification and approximation approaches to
estimate daily rainfall based on infrared and daytime visible
data from geostationary satellites [14].

3.1.5 TRMM data

It is the gridded precipitation product from the TRMM project.
Just as with IMERG, TMPA uses the TRMM satellite to calibrate
and combine PMW estimates from different platforms.
Estimates derived from geosynchronous IR measurements
calibrated against PMW estimates on a monthly basis are used
to fill in the gaps in the PMW field. TMPA is available at a
resolution of 0.25° every 3 h covering up to ±50° latitudes. Two
different products of TMPA are available: the real-time
product (with a 9-h delay) and the research product. This
study uses the research product, which is available beginning
in 1998. The research product utilizes the TRMM Precipitation
Radar onboard the satellite for calibration and has the
additional monthly gauge adjustment step [15].

3.2 Methodology

The overall methodology adopted in this study included
downloading raw data of SPPs form google earth engine and
evaluating the raw data compared to observed data based on
performance and magnitude-based index. Figure 3 shows the
overall methodological framework for our work.

3.2.1 Extraction of Raw SPPs

We have obtained data on various SPPs for 59 different
meteorological station from Earth Engine, a platform that
allows for the scientific analysis and visualization of geospatial
datasets. This platform is available to academic, non-profit,
business, and government users.

3.2.2 Evaluation of Raw SPPs

Evaluation of SPPs have been done based on six indices i.e.,
POD, CSI, FBI, FAR, RMSE and PBIAS. Among these six indices
earlier four are performance-based indices and later two are

Figure 3: Methodological Framework

magnitude-based indices. POD shows the proportion of how
well precipitation events are detected compared to that of
total gauged based precipitation events. CSI shows the overall
proportion of how well precipitation events are detected
compared to that of total number of precipitation event
detected either by gauge or satellite. The false alarm ratio for
precipitation detection is the number of false precipitation
detection per total number of precipitation detection FBI
shows a biasness between gauge precipitation and satellite
detected precipitation based on frequency. Regarding
performance-related metrics, we have evaluated how Satellite
Precipitation Products (SPPs) identify precipitation in
comparison to various rain gauge measurements. The
identification of intense precipitation is deemed:
"T" when both SPPs and rain gauge data indicate a daily
rainfall ≥ 1mm.
Conversely, it is classified as "F" when SPPs indicate rainfall
on non-rainy days according to rain gauge data.
Similarly, the identification is labeled as a "M" when SPPs fail
to detect rainy days based on rain gauge observations.
Detection is considered "I" when both SPPs and rain gauge
data reflect a daily rainfall < 1 mm. Based on the total count of
these detections, we calculated the probability of detection
(POD), critical success index (CSI), false alarm ratio (FAR), and
frequency bias index (FBI) as follows:

POD = T

T +M
(1)

C SI = T

T +M +F
(2)

F AR = F

T +F
(3)

F B I = T +F

T +M
(4)
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The desirable values for both probability of detection (POD)
and critical success index (CSI) are 1, while the desirable value
for false alarm rate (FAR) is 0. Additionally, the preferred value
for the false alarm bias index (FBI) is also 1. The value of FBI
lesser than 1 signifies underestimation of precipitation
detection and higher than 1 signifies overestimation of
precipitation detection.

In case of magnitude-based indices, we have computed PBIAS
and RMSE of selected SPPs with respect to gauged rain gauge
observation. Percent bias (PBIAS): Percent bias (PBIAS):
Percent bias (PBIAS) assesses the simulated data’s average
tendency to be greater or smaller than their observed
equivalents [16]. PBIAS has an optimum value of 0, with
low-magnitude values indicating accurate model simulation.
Positive values indicate underestimation bias in the model,
whereas negative values suggest overestimation bias in the
model. PBIAS is calculated using the following equation:

PB I AS =
∑n

i=1(SPPi −Gaugei )∗100∑n
i=1 Gaugei

(5)

Root mean square error (RMSE): RMSE gives information
regarding the performance of an SPPs by permitting a
comparison of differences between the SPPs value and the
gauge value. With a minimal and optimum value of RMSE of
zero, a lower value of RMSE implies greater performance of
SPPs data. Given its limitations, a few major errors in the total
can result in a considerable increase in RMSE. The RMSE is
calculated as follows:

RMSE =
√∑n

i=1(SPPi −Gaugei )2

n
(6)

3.2.3 Regionalization of Nepal

Here eastern part is considered as a part of Nepal having
longitude greater than 86°. For evaluating the performance of
SPPs for eastern part of Nepal, we have classified DHM
stations of eastern Nepal on the basis of an elevation. We
regionalize based on elevations as: < 500m, 500 – 1000m,
1000-1500 m, 1500 – 2000 m, 2000 – 2500 m, and > 2500 m.

4. Results and discussion

4.1 Evaluation of Raw SPPs

Evaluation on the basis of performance and magnitude-based
index was done for each classified region of eastern Nepal. The
result of evaluation of raw and bias corrected SPPs for each
classified region is discussed below:

4.1.1 For elevation <500m

For this region, PERSIANN-CDR performed well in terms of
POD and CSI while CHIRPS but showed well performance
in terms of FBI and FAR than other SPPs. Mean value less
than 1 of FBI for CHIRPS suggests the underestimation of the
rainfall detections. TRMM and IMERG showed lower CSI and
POD and higher value of FAR. Both overestimated the rainfall
event detection having FBI value higher than 1. The plot of
performance-based index for this elavation range is sghown in
figure 4.

Similarly figure 5 shows, the plot of magnitude index for this
elevation range. RMSE mean value is in similar range for all
SPPS. PERSIANN showed higher mean PBIAS. Higher value for
mean PBIAS(-ve) of PERSIANN suggests it highly
underestimate the rainfall amount than any other SPPs. PBIAS
value for other SPPs were near to zero, which shows good
estimation of rainfall amounts.

Figure 4: Performance Index for elevation < 500m

Figure 5: Magnitude Index for elevation < 500m

4.2 For elevation 500-1000m

This elevation region consisted only one station among the
considered 59 stations. For this region PERSIANN-CDR
showed better performance in terms of CSI and POD. FBI
value greater than 1 and grater than of all other SPPs of
PERSIANN-CDR suggests overestimation of rainfall events.
CHIRPS showed lesser false alarms where as TRMM has
highest false alarms. CHIRPS only underestimated the rainfall
detection among other SPPs. PERSIANN-CDR showed lesser
RMSE and higher PBIAS than any other SPPs. IMERG has
slightly lesser RMSE than that of PERSIANN-CDR and shows
good estimation of rainfall amount compared to observed
data. CHIRPS and TRMM values were comparable in terms of
RMSE and PBIAS.

4.3 For elevation 1000-1500m

For this region PERSIANN-CDR showed better performance in
terms of CSI and POD. FBI values were greater than 1 for all the
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product except CHIRPS indicating overestimation of rainfall
events. CHIRPS showed lesser false alarms whereas TRMM has
highest false alarms. The plot of performance index for this
elevation range is shown in figure 6.

Similarly figure 7 shows, the plot of magnitude index for this
elevation range. PERSIANN-CDR showed lesser RMSE and
higher PBIAS than any other SPPs. CHIRPS having mean value
of PBIAS near to zero shows good estimation of rainfall amount
than other SPPs. IMERG and TRMM values were comparable
in terms of RMSE and PBIAS.

Figure 6: Performance Index for elevation 1000-1500 m

Figure 7: Magnitude Index for elevation 1000-1500m

4.4 For elevation 1500-2000m

For this region PERSIANN-CDR showed better performance in
terms of CSI and POD. FBI values were greater than 1 for all the
product except CHIRPS indicating overestimation of rainfall
events. CHIRPS showed lesser false alarms whereas TRMM has
highest false alarms. The plot of performance index for this
elevation range is shown in figure 8.

Similarly, Figure 9 shows, the plot of magnitude index for this
eleavtion range.PERSIANN-CDR showed lesser RMSE and
higher PBIAS than any other SPPs. CHIRPS, IMERG and
TRMM had mean value of PBIAS near to zero showing good
estimation of rainfall amount.

Figure 8: Performance Index for elevation 1000-1500 m

Figure 9: Magnitude Index for elevation 1500-2000 m

4.5 For elevation 2000-2500m

For this region PERSIANN-CDR showed better performance
in terms of CSI and POD. FBI values were greater than 1 for
all the product except CHIRPS, indicating overestimation of
rainfall events. Overall TRMM had a good estimation of rainfall
detection than other SPPs. CHIRPS showed lesser FAR value
indicating lesser false alarm whereas TRMM showed more false
alarms.The plot of perfromance index for this elevation range
is shown in Figure10.

Figure 10: Performance Index for elevation 2000-2500 m
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Similarly, Figure 11 show, the plot of magnitude based index of
this elevation range. PERSIANN-CDR showed lesser RMSE
and higher PBIAS than any other SPPs. CHIRPS, IMERG and
TRMM had comparable mean value of PBIAS. All other except
PERSIANN-CDR overestimated the rainfall amount, while
PERSIANN-CDR highly underestimated precipitation amount.

Figure 11: Magnitude Index for elevation 2000-2500 m

4.6 For elevation >2500m

For this region PERSIANN-CDR showed better performance in
terms of CSI and POD. Mean FBI values were greater than 1 for
all the product except CHIRPS indicating overestimation of
rainfall events. Overall TRMM and IMERG had a good
estimation of rainfall detection than other SPPs. CHIRPS
showed lesser FAR value indicating lesser false alarm whereas
TRMM showed more false alarms. The plot of performance
Index for this elevation range is shown in Figure 12

Figure 12: Performance Index for elevation >2500 m

Similarly, Figure13 shows the magnitude index for this
elevation range. PERSIANN-CDR showed lesser RMSE and
higher PBIAS than any other SPPs. All product underestimated
the rainfall amount. TRMM showed good results in terms of
PBIAS and RMSE.

Figure 13: Magnitude Index for elevation > 2500 m

5. Conclusions

The study conducted in Nepal’s eastern region assessed
several SPPs based on their performance and
magnitude-based index. PERSIANN-CDR showed better
performance in terms of POD and CSI compared to other SPPs
in the eastern region of Nepal. However, it consistently
overestimated rainfall detection at all elevations and showed a
significantly high negative PBIAS. On the other hand, CHIRPS
displayed fewer false alarms than other SPPs for all elevation
ranges but always underestimated rainfall detection. TRMM
and IMERG exhibited consistently higher false alarms for all
elevation ranges. It is worth noting that with an increase in
elevation range, all the SPPs underestimated the daily rainfall
amount, showing a high negative PBIAS. The underestimation
of precipitation events by CHIRPS and a decline in
performance of SPPs with rise in altitude was also highlighted
by (Prajapati et al., 2022) [17]. The result of this study suggests
that SPPs needs proper corrections method before using it for
hydrological applications in eastern Nepal. This information
is crucial for professionals in the field of water resource
management, including designers, planners, and
policymakers, as they can utilize these findings to develop
sustainable approaches towards water resource management.
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