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Abstract

This research paper introduces an innovative approach to network intrusion detection aimed at identifying both frequently occurring
known attack types and unusual traffic patterns transparently and interpretably. The proposed model combines the strengths of
supervised and unsupervised learning techniques while leveraging interpretability tools for enhanced insight. In supervised learning,
we employ XGBoost as our primary algorithm, augmented by SHAP (SHapley Additive exPlanations) explanations to shed light
on the inner workings of our model by transforming input feature vectors into vectors of feature importance scores for each class,
thereby facilitating the understanding of prediction rationale. In the next phase, unsupervised learning methods is harnessed by
using auto-encoder. The auto-encoder play a crucial role in distinguishing anomalous traffic flows and detecting normal flows and
known attacks, enhancing the model’s overall versatility and adaptability. We conduct comprehensive testing to evaluate the model’s
effectiveness using diverse datasets, combining NF-UNSW-NB15-v2, NF-ToN-loT-v2, NF-BoT-loT-v2, and NF-CSE-CIC-IDS2018-v2.
The results of our experiments demonstrate above 99% of detection rate for anomalous traffic patterns or potential zero-day attacks
against both normal and the combination of normal and known attacks. Importantly, our model’s overall performance compares
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favourably with state-of-the-art approaches documented in the cybersecurity literature.
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1. Introduction

In today’s digitally connected world, the expansion of
networked systems has ushered in an era marked by
unparalleled convenience and efficiency. However, this
heightened connectivity has also exposed these systems to
cybersecurity threats, ranging from sophisticated malware to
targeted intrusion attempts. In response to these challenges,
Network Intrusion Detection Systems (NIDS) have emerged as
a vital line of defence for identifying and mitigating malicious
activities within network traffic.

While NIDS have demonstrated their effectiveness in
pinpointing anomalies and potential threats, they have also
presented a fundamental challenge: their inherent black-box
nature. This opacity has left cybersecurity practitioners
grappling with a critical issue—comprehending the rationale
behind NIDS decisions. This lack of transparency hampers the
ability to trust these systems, fine-tune their performance,
and ultimately enhance their detection capabilities. As a
result, there is a pressing demand for NIDS solutions that
provide robust security and clear and comprehensible
explanations for their decision-making processes. These
limitations step into the domain of explainable NIDS [1]. This
research paper introduces an innovative approach to building
Explainable NIDS, capitalizing on a powerful ensemble
strategy that harnesses the strengths of XGBoost, SHAP
explanations, and Autoencoders[2]. The overarching goal is
twofold: to elevate the detection accuracy of NIDS through the
synergy of machine-learning models and to demystify the
decision-making process, making it interpretable for
cybersecurity analysts.

The ensemble methodology outlined in this paper leverages
the versatility of XGBoost[3], a gradient-boosting framework
celebrated for its exceptional predictive capabilities. We aim
to illuminate the underlying logic governing the ensemble’s
predictions by integrating SHAP [4] explanations. SHAP
explainers provide valuable insights into feature importance
and contribution, enhancing transparency. Additionally,
Autoencoders, a neural network variant, come into play to
capture intricate patterns within network traffic data. This
further fortifies the ensemble’s ability to accurately discern
and flag malicious behaviour.

In the forthcoming sections, we delve into the technical
intricacies of our Explainable NIDS approach, which includes
an in-depth exploration of the architecture, data
preprocessing steps, and training strategies. Moreover, we
present a comprehensive set of experimental results,
underscoring the advantages of our ensemble model. In
essence, this paper seeks to elevate the effectiveness and
efficiency of threat detection, facilitate more informed
decision-making, and foster collaborative human-Al
cybersecurity operations by infusing NIDS with the power of
explainability.

2. Related Works

Several noteworthy research efforts have contributed to
advancing NIDS and the quest for accurate and explainable
multi-class classification of network traffic data. Giuseppina
et al. [5] introduced a novel neural model attention-based
method, focusing on achieving precise and interpretable
multi-class classification. Maonan et al. [6] proposed a
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comprehensive framework that extends the scope of intrusion
detection systems by incorporating SHAP explanations. This
framework combines both local and global explanations to
enhance the interpretability of IDS, shedding light on the
decision-making process. Zakaria et al. [7] took a multifaceted
approach, designing a DL and XAl-based system. They
leveraged three distinct explanation methods, namely LIME,
SHAP and RuleFit, to provide local and global explanations for
the outputs of a DNN model.

Pieter et al. [8] presented a two-stage pipeline for binary
classification tasks involving normal and suspicious network
traffic. Their approach initially utilises XGBoost for the
first-phase classification, followed by autoencoders. SHAP
explanations derived from the XGBoost model are then fed
into the autoencoder for anomaly detection. This innovative
methodology demonstrated remarkable performance
improvements, excelling in accuracy, recall, and precision
scores compared to alternative models.

Lopez-Martin et al. [9] introduced a classification model
employing a conditional variational autoencoder that detects
and categorises different label types within network traffic
data. Mirsky et al. [10] adopted an ensemble approach to
develop an ML-NIDS named Kitsune. Their proposed model
transforms network packet features into an ensemble of
autoencoders, with each autoencoder responsible for
reconstructing packet features and computing the Root Mean
Square Error (RMSE). This process enables the classification of
network traffic based on predefined thresholds, enhancing the
system’s overall effectiveness in intrusion detection. These
pioneering studies represent significant contributions to
network intrusion detection, showcasing innovative
techniques and methodologies to improve the accuracy,
interpretability, and overall performance of NIDS.

Upon delving into the existing literatures, it becomes clear
that models constructed through the orchestration of
Supervised Network Intrusion Detection Systems, eXplainable
Artificial Intelligence (XAI), and Anomaly-Based NIDS exhibit
an enviable array of superior performance metrics. These
encompass essential measures like accuracy, precision, and
recall scores. These models notably showcase a remarkable
aptitude for zero-day attack detection—an essential capability
in modern cybersecurity. It is worth highlighting, however,
that these models currently find themselves constrained
within the confines of binary classification, thereby limiting
their capacity to offer detailed insights into specific attack
types. We have embraced a refined approach to overcome
these inherent constraints, using XGBoost as the primary

classifier to identify the normal and known attack types.

Further, autoencoder is trained to distinguish the anomalous
traffic flows. This harmonious synergy empowers our model
with the unique capability to recognize well-known attack
types and discern the subtle intricacies of anomalous network
traffic flows.

3. Methodology
3.1 Proposed Model

Our model is meticulously crafted to adeptly classify benign
flows and other five specific attack classes :DDoS , DoS, XSS,

scanning, and Reconnaissance as known attack types.
Remarkably, our model extends its adaptability to encompass
the ever-evolving threat landscape by categorizing all other
attack types within the dataset as new or zero-day threats—a
testament to its agility in addressing emerging risks. For
comparision of performance of autoencoder in different
training set, it is fed with feature vectors as training set in one
environment and in other case we used the SHAP explanation
to train the autoencoder. The block diagram of these test
environment is as shown in figure 1 and figure 2.
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Figure 2: Block Diagram of Model to use SHAP values to train
the Autoencoder

Proposed model is subjected to rigorous testing in the
subsequent validation phase using a dedicated dataset split.
Furthermore, introducing new attack types served as a litmus
test, evaluating its capacity to detect known and novel attack
patterns effectively. This comprehensive evaluation
underscores the model’s robustness and establishes it as a
formidable asset in contemporary network security—capable
of addressing the ever-evolving threat landscape with
confidence and competence.

3.2 Implementation

In the data collection phase, to assess and compare various
attack scenarios conducted across diverse testbed networks,
we utilize the combination of various datasets:
NF-UNSW-NB15-v2 [11], NF-ToN-IoT-v2[11],
NF-BoT-IoT-v2[11], and NF-CSE-CIC-IDS2018-v2[11]. This
datasets comprises a rich collection of 43 NetFlow-v9 features
meticulously extracted from their respective pcap files.
Approximately 33% of the data in this dataset represents
benign network flows, while the remainder encompasses a
diverse spectrum of attack categories. This comprehensive
amalgamation provides a robust and multifaceted foundation
for evaluating and analysing various attack scenarios across
different network environments. In the preprocessing stage
we removed the duplicate rows, rows with infinte values and
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not-a-number values and defined frequently occurring known
attacks as those that have been observed more than a million
times. These well-documented attack types are categorized
and classified as known attack class by our model. However,
it’s important to note that the remaining attack types, which
occur less frequently, are treated as suspicious traffic or
potential zero-day attacks. These are the types of attacks that
have not been extensively documented or observed, making
them a critical focus for anomaly detection. Table 1 shows the
distribution of attack types in the dataset and their respective
frequencies. This information serves as a valuable reference
for understanding the dataset’s composition and the focus of
our analysis.

Table 1: Categorywise distribution of attack types in dataset

SN | Attack Label No. of traffic flow
1 | Benign 20744072
2 | DDoS 17302920
3 | DoS 14787587
4 | Scanning 3002169
5 | XSS 2449955
6 | Reconnaissance 2374188
7 | Others 2011774

In the subsequent stages of our approach, we undertake a
series of data preprocessing steps to prepare our dataset for
the classification phase. These steps are essential to ensure
the fairness and uniformity of our data representation. First,
we address potential bias by dropping source and destination
IP addresses from our dataset. This step helps remove
source-specific or destination-specific patterns, ensuring a
more balanced and unbiased dataset. Next, we employ label
encoding for attack types to ensure uniformity in our data
representation.

Additionally, we employ a crucial normalization step using the
min-max scaler. Through this process, we scale each feature to
a standardized range of (0, 1), ensuring consistent and fair data
treatment. Our focus for the initial classification phase narrows
down to normal flows and frequently occurring attacks. We
separate the remaining less frequent attack types from the
training and testing datasets to facilitate this. The dataset is
then divided into an 80-20 percentage of train and test split for
this preliminary classification stage.

In this stage, we harness the power of the XGBoost classifier.
We employ the multiclasslogloss metric during training to
evaluate and refine the model’s performance. Notably, we set
the use label encoder parameter to false. This choice is
deliberate, as we have already encoded the attack types in
prior stages, ensuring the model can learn effectively and
accurately refine its predictions.

The XGBoost classifier becomes the focal point of our analysis,
and we delve into its inner workings through the SHAP tree
explainer. This enlightening explainer is instrumental in
shedding light on the inner workings of the classifier by
providing explanations in the form of SHAP values. Each
SHAP value corresponds to a traffic flow and represents a
vector with both magnitude and direction. These values
elucidate the role of each feature in the model’s
decision-making process, offering a clear picture of how each

feature contributes to the predictions made by the classifier.
In essence, the SHAP values generate a feature importance
vector, which allows us to discern the relative significance of
different features in shaping the predictions of our model. The
feature vector x = [x1, X2,...,X41] is converted into the SHAP
values ¢ = [[¢p1, P2, ..., P41] is the feature importance of x; to
identify 'x’ as class 1, and ¢4 is the feature importance of x4;
to classify 'x’ as class 1’ or known attack. It gives us a refined
understanding of the underlying factors driving the classifier’s
decisions for various attack classes. By harnessing the power
of SHAP explanations, we equip ourselves with the knowledge
required to interpret the model’s output effectively. This
interpretability is a critical component of our approach,
enabling us to make accurate predictions and understand why
those predictions are made, paving the way for transparent
and trustworthy network intrusion detection.

Equipped with this enriched vector containing feature
importance scores for the input vector, we train the respective
autoencoder as defined earlier with both these vectors . These
autoencoder is structured with an encoder-decoder
framework, featuring layers with 41-20-10-5 neurons and
ReLU activation functions for the encoder layers. In contrast,
the decoder layers consist of 5-10-20-41 neurons with sigmoid
activation function in hidden layers and hyperbolic tangent
(tanh) activation function in output layer. To further enhance
the autoencoders’ performance, we utilize the ’Adam’
optimizer as the default choice and meticulously quantify the
reconstruction loss using the Mean Squared Error (MSE)
metric as given by following equation:

N
MSE =Y (x; — x)*
i=1

This holistic approach ensures our model excels in classifying
known attack types and demonstrates resilience when
confronted with emerging threats. Individual autoencoder
model is trained for benign flows and frequently occurring
attack types over 50 epochs, employing mini-batching with a
size of 128. For anomaly detection, the reconstruction loss on
the training data is evaluated, and a threshold is set as the
mean of the training loss plus its five times it’s standard
deviation. This threshold serves as a decisive boundary:
incoming traffic flows with a reconstruction loss below this
limit are classified as frequently occuring attack types. In
contrast, those exceeding the threshold are flagged as
anomalous flows.

4. Result and Analysis

After training the XGBoost model with the training set and
evaluating its performance on the test set, we obtained the
classification report presented in Table 2. Additionally, the
confusion matrix is illustrated in Figure 3. Table 2 shows that
the model performs exceptionally well regarding accuracy,
precision, recall, and F1-score across normal flow and known
attack types. This exceptional performance is necessary for
the subsequent modules, where accurate classification is
critical. It is worth noting that the high precision values
indicate a low false alarm rate, signifying that when the model
predicts an intrusion, it is highly likely to be a genuine threat.
Conversely, the high recall values indicate a high detection
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rate, emphasizing the model’s effectiveness in correctly
identifying intrusions. These evaluation metrics are essential
in intrusion detection systems, where minimizing false alarms
and maximizing threat detection are primary objectives.

Table 2: Classification Report of XGBoost Model

Class Precision Recall F1-Score Support
0 0.99 0.99 0.99 41564
1 0.99 0.99 0.99 79758
Accuracy 0.99 121322
macro avg 0.99 0.99 0.99 121322
weighted avg 0.99 0.99 0.99 121322
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Figure 3: Confusion Matrix of XGBoost Model

Figure 4 provides a global explanation of XGBoost Classifier
used in previous step. This explanation is generated by the

SHAP tree explainer applied to the trained XGBoost model.

The figure shows the impact of each feature on the decision to
be positive or as known attack. The features impacting the
most are placed at the top while less important one are lower
down. Horizontal line in the middle represent the baseline
prediction, which is the expected value of prediction of the
benign flow, the points above this line contribute positively
and below this line contribute negatively. In the figure
DURATION_IN is the most impacful feature and
CLIENT_TCP_FLAGS is the least impactpul
Furthermore, the figure showcases the top 20 features, their
respective magnitudes, and directions of influence on the
classification. These values represent the SHAP values or
feature importance scores, providing valuable insights into
which features play the most crucial roles in determining the
class of traffic flow.

In the anomaly-based NIDS phase, we employed autoencoder,

trained to detect seen and unseen network traffic patterns.

The autoencoder was trained using the input feature vector
and feature importance scores provided by the SHAP explainer
derived from our XGBoost model’s training data and with input
feaure vector that denotes the benign flow.

Autoencoder learned to capture the unique characteristics and

anomalies associated with the benign flows during training.

We established a threshold based on the reconstruction loss
of each autoencoder to determine whether incoming traffic
was anomalous or normal. For testing, we evaluated each
autoencoder’s performance using two types of data:

Normal Flow: We used the input feature and feature
importance scores of the normal traffic flows to train the
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Figure 4: Global explanation for prediction made by XGBoost
Classifier
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respective autoencoder. This allowed us to assess the
autoencoder’s ability to detect normal flows effectively.

Unseen Attack Types: To evaluate the adaptability of our
autoencoder, we tested them with the input feature and feature
importance scores of previously unseen attack types. This
allowed us to assess the autoencoder’s ability to detect the
previously unseen attack or potential zero-day threats.

Training loss in each epochs for each autoencoders is as
shown in figure 5 and 6. The performance of each
autoencoders is depicted in figures 7 and 8, providing insights
into their capabilities to detect normal traffic flow, and avoid
unseen attack types. The detection or avoidance is shown by
the threshold, red dotted line in figures. These results are
instrumental in assessing the overall effectiveness of our
network intrusion detection system.

To quantitatively assess the performance of our autoencoders,
we conducted two distinct test scenarios as mentioned below:

For distinguishing unseen new attacks from the normal traffic,
method as shown in figure 1 is used, where autoencoder one
is trained with the feature vector of traffic flows belonging to
the normal traffic. This is tested with the set of new unseen
attack types as mentioned as others in table 1. The prediction
of the model against its true label are as shown in figure 9. The
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Figure 7: Performance of autoencoder trained with the
feature vector of normal traffic flow

detection rate for this model is observed as 1, and the false
alarm rate is observed as 0.138.

In another scenario, the autoencoder is used to distinguish new
attacks from the previosuly seen attack for this the method as
shown in figure 2 is used where autoencoder is trained with
the SHAP values obtained from XGBoost explainer. The model
is tested with the set of new unseen attack types as mentioned
as others in table 1. The prediction of the model against its
true label are as shown in figure 10. The detection rate for this
model is observed as 0.991, and the false alarm rate is observed
as 0.138.

While the detection rates for each of the autoencoders
demonstrate exceptional performance, there is room for
improvement in terms of enhancing the false alarm rates. It’s
worth noting that any traffic flows that escape detection by the
autoencoders are flagged as suspicious. These instances of
suspicious traffic flows are crucial and require manual
investigation by security analysts. This investigative step is
necessary to identify and assess the potential threat posed by
these flows, as they may represent emerging attack patterns or
zero-day vulnerabilities. In this way, the autoencoders serve as
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Figure 8: Performance of autoencoder trained with the SHAP
values of normal traffic flow
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Figure 9: Prediction against the true label for autoencoder
trained with input feature vector
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Figure 10: Prediction against the true label for autoencoder
trained with SHAP values

avaluable first line of defense, effectively filtering out benign
traffic, and raising red flags when there is a strong indication
of anomalous behavior.

5. Conclusion and Future Work

In conclusion, our research has successfully implemented an
ensemble approach to building an explainable Network
Intrusion Detection System (NIDS). This approach leverages
hybrid learning methods, combining the power of XGBoost,
autoencoder, and an explainable layer to enhance the
detection of known attack types.

Our experimental evaluation, conducted across a diverse range
of datasets, including NF-UNSW-NB15-v2, NF-ToN-IoT-v2, NF-
BoT-IoT-v2, and NF-CSE-CIC-IDS2018-v2, underscores the
robust operability of our model in various network scenarios.
Importantly, our model exhibits the capacity to identify known
attack while also effectively flagging previously unseen attack
patterns as anomalous traffic flows.

The performance of our overall model, as well as the
individual components within it, is highly competitive when
compared to state-of-the-art cybersecurity research. In
several instances, our approach has even surpassed the
performance of existing methodologies, reinforcing the
effectiveness and relevance of our ensemble-based,
explainable NIDS in the ever-evolving landscape of network
security. This research opens new avenues for building more
robust and interpretable network intrusion detection systems,
contributing to the ongoing efforts to protect critical networks
from cyber threats.

In the future, there are several exciting avenues for enhancing
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this research. Firstly, we can increase the known attack
domain by classifying them to the respective class of attack,
which will be one step closer to interpretablity of the model.
Next step is to design the single point for the prediction and
explanation which involve consolidating the predictions of
different modules inside the model. Moreover, there is
potential for further advancements in the explanation domain,
allowing us to interpret individual explanations for traffic
flows to detect anomalies more effectively. This opens the
door to qualitative evaluations of our model’s effectiveness in
cybersecurity, ultimately improving our understanding and
response to network threats.
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