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Abstract
As the tech world continues its shift from monolithic software systems to a collection of smaller microservices, new challenges
emerge. One of the main challenges is overseeing and ensuring the safety of the interactions between these microservices. This is
where the concept of a service mesh shines, playing a critical role in helping everyday applications communicate securely and
efficiently. In our study, we closely examined two leading options in this realm: Linkerd and Istio. Our findings indicated that, in many
areas, Linkerd came out on top. Armed with this knowledge, we ventured to design a new, hybrid service mesh, integrating the
strengths of both Linkerd and Istio. A standout feature of our design is the inclusion of Maglev Hashing, which not only propels its
performance beyond that of Linkerd but also ensures lower computer power and memory demands. This research offers valuable
insights and points toward a more efficient future for managing the ever-increasing microservices in day-to-day applications.
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1. Introduction

Kubernetes, a widely embraced open-source platform,
streamlines the orchestration and administration of
containerized workloads and services. Its robust features and
community support make it a go-to solution for efficiently
managing distributed applications in diverse environments
[1, 2]. Originally developed by Google, it became open-source
in 2014. With the rise of container deployment, Kubernetes
emerged as a lightweight virtualization system, offering tools
for container management. It ensures uninterrupted
operations by automatically restarting containers and
provides features like load balancing and automatic scaling.
To meet enterprise needs, companies like Google, Amazon,
and Microsoft offer fully managed Kubernetes solutions that
are widely adopted by third-party companies to build modern
cloud architectures. These solutions facilitate the deployment
of millions of containers daily, and notable companies such as
Netflix heavily rely on Kubernetes for managing their services
composed of numerous microservices. However, the rapid
adoption of Kubernetes also raises security concerns
[2, 3, 4, 5].

The rapid advancements in cloud computing, container
technology, and microservice architecture [6] have brought
about new security challenges in cloud computing platforms.
Security and privacy concerns have become increasingly
common in cloud services. With Kubernetes being the
dominant container cloud technology, ensuring its security is
of utmost importance [7].

In broad terms, the shift from servers and virtual machines to
cloud-native environments [8], utilizing containers and
Kubernetes, did not eradicate the threats or consequences of
attacks. It also did not absolve cloud providers of security
responsibilities. Instead, it introduces a range of new and
unique security challenges [9]. Kubernetes relies on

containers to deploy applications, and these containers are
constructed from pre-existing images. If an attacker manages
to insert harmful code into a container image, they have the
potential to compromise not only the application running
inside that container but also the Kubelet, which enables
communication between different nodes. Additionally, the
containers themselves executing on the nodes can pose a
significant risk, especially when considering the vulnerability
of the cluster network as a whole. These factors combined can
make the Kubernetes cluster susceptible to attacks.

A secure Kubernetes cluster requires a comprehensive
approach that addresses multiple levels of security. As
depicted in figure:1, the breach of a Kubernetes cluster can be
categorized into four key aspects: infrastructure, Kubernetes,
containers, and applications [10]. Each aspect demands
specific attention and measures to ensure the overall security
of the cluster. Infrastructure security forms the foundation of
the security pyramid, representing level four. This level
encompasses various aspects such as network security,
storage security, securing the host operating system, and
managing access to the hosts.

Moving up to level three, it focuses on the computing platform
components, with Kubernetes offering configurable policies
like Identity and Access Management (IAM), Role-Based
Access Control (RBAC), Security Context Control (SCC), and
Pod Security Policies (PSP) [11]. These measures help secure
the deployments in the upper levels of the pyramid.

Level two operates within the core of the running pods or
containers [12, 13]. It ensures that data securely flows between
containers and implements safeguards to protect the integrity
and confidentiality of the data.

Finally, level one, the top level, is centered around application
security. This level provides functionalities that are directly
tied to the applications, such as authentication and
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authorization mechanisms. It addresses the security needs
specific to the applications themselves. By addressing each of
these levels and their respective security concerns, a
comprehensive security approach can be established to
protect a Kubernetes cluster effectively.

Figure 1: The many dimensions of Kubernetes security

According to figure:1, security concerns at the pod or
container level primarily arise from the risk of unauthorized or
untrustworthy third parties eavesdropping on data. There are
two main types of container-related data that are susceptible
to such eavesdropping.

The first type involves user requests transmitted over HTTP
from external sources to applications within a Kubernetes
cluster. These requests can contain sensitive information,
such as user credentials or confidential data, which need to be
protected from interception or unauthorized access.

The second type of data pertains to the communication
between application pods within a Kubernetes cluster using
transport protocols. This data flow, occurring internally within
the cluster, must also be safeguarded to prevent unauthorized
parties from intercepting or tampering with the information

Figure 2: Illustrates several attack vectors.

being transmitted. Attackers have the ability to initiate various
attacks on servers or machines within a Kubernetes
environment by generating artificial traffic load. This includes
flooding the target’s service with network packets, which is a
malicious act known as a DoS or Distributed Denial of Service
(DDoS) attack.

Securing these two types of container-related data is crucial to
maintain the confidentiality and integrity of the
communication within a Kubernetes cluster. In addition to
the mentioned attacks, there are various other attack vectors
that exist which is shown in figure:2. In a cloud environment,
both user-facing (North-South) and inter-service (East-West)
traffic exist. Protecting the confidentiality of East-West traffic
is crucial to prevent attacks and monitor suspicious activities.
Our research aims to implement Zero Trust for securing
microservices’ East-West traffic in a containerized
environment. To achieve this, we address the following
sub-questions: how to regulate the flow of East-West traffic
and how to ensure confidentiality during data transit.

2. Problem Statement

A survey from StackRox shows that 94% of organizations have
encountered serious security problems in the Kubernetes
container environment [14]. According to the article by
StackRox [14], Tesla experienced a breach in their cloud
infrastructure in March 2018 due to insecurely configured
Kubernetes clusters. This allowed attackers to gain
unauthorized access to Tesla’s internal systems and unlawfully
acquire sensitive data, including customer information and
valuable trade secrets. Similarly, in June 2020, hackers
successfully infiltrated a K8s toolkit and utilized it to distribute
malware specifically designed for cryptocurrency mining
across multiple clusters. The malware effectively utilized the
resources of the compromised clusters to mine
cryptocurrency for the benefit of the attackers. Furthermore,
in December 2021, several companies became victims of data
theft as a result of exploiting a vulnerability within the
Kubernetes API. This allowed the attackers to gain
unauthorized access to the companies. Kubernetes clusters,
leading to the theft of sensitive data, including customer
information and financial records. Furthermore, a survey
conducted by the CNCF (see figure 3) shows that security and
networking are the top challenges for Kubernetes users. The
main focus of this paper is to introduce an
encryption-as-a-service architecture that specifically
addresses the security concerns at level two in figure:1. There
are several reasons for emphasizing this level. Firstly, security
at the application level is typically handled by default within
the application itself, while security at the platform and
infrastructure levels is usually well-provided and continuously
upgraded within a Kubernetes cluster. Secondly, the security
at the container level, particularly the data flow between
containers using IPC communication, is often lacking
adequate protection. Therefore, there is a need for a
straightforward, adaptable, and efficient solution to encrypt
this data flow.

Furthermore, In today’s microservices-driven ecosystem, the
prominence of service meshes like Linkerd and Istio has
surged due to their facilitative role in service communication,
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Figure 3: Kubernetes top challenges (source: thenewstack)

security, and observability [15]. Both, while popular, have
shown specific advantages and limitations, especially in terms
of memory and CPU usage, latency, and performance
overhead. This prompts a crucial inquiry: Is it possible to
create a hybrid service mesh that integrates the best of both
Linkerd and Istio, leading to an optimized solution for
microservices communication challenges? This thesis seeks to
construct such a hybrid model, juxtaposing its performance
against the individual capabilities of Linkerd and Istio. The
overarching goal is to determine if a combined approach can
overcome the inherent constraints of the existing service
meshes, offering a more streamlined, efficient, and scalable
framework for contemporary microservices infrastructures.
Furthermore, the existing envoy proxy [16] uses Round Robin
as a load balancing, which consumes more computing
resources.

3. Literature Review

Traditionally, researchers have suggested using a service
mesh to encrypt data flow between microservices on
Kubernetes [17]. The service mesh acts as a special layer that
handles communication between services. It functions similar
to how a container separates the application from the
operating system. By abstracting the communication process,
the service mesh facilitates the management of keys,
certificates, and TLS configuration for continuous encryption.
Additionally, it enables policy-based authentication, allowing
secure encrypted communication (service-to-service) and
user authentication.

Another proposal by Sarada Prasad et al. introduces Yugala, a
lightweight decentralized encrypted cloud storage architecture
that utilizes blockchain technology. Yugala aims to maintain
file confidentiality, eliminate centralized data deduplication,
and enhance file integrity [18].

Anton Vedeshin et al. present a secure and reliable
infrastructure and architecture solution. Their approach
incorporates the limitations of the computing process into the
defense strategy, making distributed file storage and
transmission highly secure. The key idea is to replace
asymmetric or public key encryption functions with
cryptographic hash functions that ensure non-key, conflict,

second pre-image, and antigenic image properties [19].

Luigi Coppolino et al. propose a method called Virtual
Security Zone (VISE) that combines Intel SGX and
homomorphic encryption. VISE relocates the execution of
sensitive homomorphic encryption primitives (like
encryption) to the cloud, within the remotely verified SGX
secure area. It then utilizes the secure area’s available memory
resources to process the sensitive data outside the secure area.
This approach safeguards the data in use from privileged
attackers in the cloud [20].

Furthermore, in recent academic explorations from 2018, the
role and benefits of service mesh in various contexts have
been elucidated. The study by [21] outlined the inherent
advantages of implementing service mesh, while [22] touched
upon its significance in microservices governance.
Furthermore, [23] examined its potential in enhancing cloud
applications, particularly for the Internet of Things (IoT). The
research presented by [24] shed light on its applicability in the
architectural frameworks for edge environments. Additionally,
[25] underscored the relevance of service mesh in the control
mechanisms of MAPE (Monitor, Analyze, Plan, Execute) loops.

4. Methodology

4.1 Hybrid Envoy Building Blocks

In the development of our hybrid service mesh model, we
integrated elements from both the Linkerd and Istio methods.
Additionally, we incorporated Maglev Hashing, a technique
developed by Google, to ensure a balanced distribution of user
requests. This prevents any segment of our system from
becoming overwhelmed. The integration of this method is
anticipated to optimize our system’s performance by reducing
computational efforts and improving response times.
Ultimately, our objective is to enhance the overall system
efficiency. Following figure 4 shows the traffic request flow:

Figure 4: Building Blocks of Hybrid Envoy

It starts with the listeners. Envoy exposes listeners that named
network locations, either an IP address and a port or a Socket
path. Envoy receives connections and requests through
listeners. Consider the following Envoy configuration:

static_resources:
listeners:
- name: listener_0
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address:
socket_address:

address: 0.0.0.0
port_value: 10000

filter_chains: [{}]

In the provided Envoy configuration, a listener termed
"listener_0" is specified with an address of 0.0.0.0 and a port of
10000. This configuration implies that Envoy actively awaits
incoming requests on the address 0.0.0.0:10000.

The "filter_chains" [26] field remains unpopulated, signifying
that no supplementary actions are mandated post packet
reception. To transition to the subsequent component, i.e.,
routes, it is essential to instantiate one or multiple network
filter chains ("filter_chains") as shown in figure 5

Envoy classifies filters into three primary categories: listener
filters, network filters, and HTTP filters. Listener filters are
activated immediately upon packet reception, predominantly
interacting with the packet headers. Notable instances of
listener filters encompass the proxy listener filter, responsible
for extracting the PROXY protocol header, and the TLS
inspector listener filter, which discerns if the incoming traffic
is TLS-encoded and subsequently retrieves data from the TLS
handshake if applicable.

Every incoming request via a listener may traverse several
filters. Moreover, configurations can be tailored to opt for
diverse filter chains contingent on specific properties of the
incoming request or connection.

Figure 5: Filter Chains

In Envoy’s framework, there exists a distinctive, intrinsic
network filter termed the HTTP Connection Manager filter,
often abbreviated as HCM. The HCM filter (see figure 6) has
the proficiency to transmute raw byte data into messages at
the HTTP level. Its capabilities encompass access logging,
request ID generation, header manipulation, route table
management, and statistics aggregation.

While multiple network filters can be delineated for each
listener (with the HCM being one such filter), our system
additionally facilitates the specification of multiple HTTP-tier
filters within the purview of the HCM filter. These HTTP filters
can be articulated under the designated field, "http_filters".

In the sequence of HTTP filters, the terminal filter should

Figure 6: HCM filter

invariably be the router filter, identified by
‘envoy.filters.HTTP.router‘. This filter shoulders the
responsibility of executing routing operations, leading us to
the subsequent foundational component: routes.

The route configuration is encapsulated within the HCM filter,
specifically under the ‘route_config‘ field. Using this
configuration, we can evaluate incoming requests based on
metadata aspects such as URI, headers, etc. Subsequent to
this evaluation, we can delineate the traffic direction.

A salient element within the routing configuration is termed a
’virtual host’. Every virtual host is endowed with a distinctive
name, which is primarily utilized for statistics generation and
not for the routing process. Furthermore, each virtual host
comprises an array of domains to which it routes. Let’s
consider the following route configuration and the set of
domains:

route_config:
name: my_route_config
virtual_hosts:
- name: ioe_host
domains: ["ioe.io"]
routes:
...

- name: test_hosts
domains: ["test.ioe.io", "qa.ioe.io"]
routes:
...

When an incoming request is directed towards ‘ioe.io‘—that is,
if the Host/Authority header is assigned one of its values—the
routes outlined within the ‘ioe_hosts‘ virtual host are then
evaluated and processed.

Conversely, should the Host/Authority header indicate either
‘test.ioe.io‘ or ‘qa.ioe.io‘, the routes encompassed by the
‘test_hosts‘ virtual host are initiated. With such a
configuration, it’s feasible to employ a solitary listener
(0.0.0.0:10000) to manage an array of primary domains. If we
specify multiple domains in the array, the search order is the
following:
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1. Exact domain names (e.g. ioe.io)
2. Suffix domain wildcards (e.g. *.ioe.io)
3. Prefix domain wildcards (e.g. ioe.*)
4. Special wildcard matching any domain (*)

After Envoy matches the domain, it’s time to process the routes
field within the selected virtual host. This is where we specify
how to match a request and what to do next with the request
(e.g., redirect, forward, rewrite, send a direct response, etc.).

Let’s look at an example:

stat ic_resources :
l i s t e n e r s :
− name: l i s t e n e r _ 0

address :
socket_address :

address : 0 . 0 . 0 . 0
port_value : 10000

f i l t e r _ c h a i n s :
− f i l t e r s :

− name: envoy . f i l t e r s . network .
http_connection_manager

typed_config :
"@type " : type . googleapis .com/
envoy . extensions . f i l t e r s . network .
http_connection_manager . v3 .
HttpConnectionManager
s t a t _ p r e f i x : hello_world_service
h t t p _ f i l t e r s :
− name: envoy . f i l t e r s . http . router

typed_config :
"@type " : type . googleapis .com/
envoy . extensions . f i l t e r s . http .
router . v3 . Router

route_config :
name: my_first_route
v i r t u a l _ h o s t s :
− name: direct_response_service

domains : [ " * " ]
routes :
− match :

p r e f i x : "/"
direct_response :

status : 200
body :

i n l i n e _ s t r i n g : "yay"

The initial segment of the configuration aligns with our
previous observations. We have incorporated the HCM filter,
designated the statistics prefix as ‘hello_world_service‘,
introduced a singular HTTP filter (router), and outlined the
route configuration. While the capability to send a direct
response from the configuration is often advantageous,
typically there exists a collection of endpoints or hosts to
which we direct the traffic. In Envoy, this is realized by
specifying clusters.

Clusters encompass a collective of analogous upstream hosts
that are receptive to the incoming traffic. Such clusters can be
constituted by a compilation of hosts or IP addresses to which
our services are actively responsive.

For example, let’s say our hello world service is listening on
127.0.0.0:8000. Then, we can create a cluster with a single
endpoint like this:

clusters:
- name: hello_world_service
load_assignment:
cluster_name: hello_world_service
endpoints:
- lb_endpoints:
- lb_policy: maglev
maglev_lb_config:

table_size: 69997
- endpoint:

address:
socket_address:
address: 127.0.0.1
port_value: 8000

Clusters are delineated parallelly with listeners through the
‘clusters‘ field. Within the route configuration and during
statistics emission, the specified cluster name is employed.
This name must maintain uniqueness among all clusters.
Within the ‘load_assignment‘ field, we can stipulate the roster
of endpoints for load balancing in addition to the
configuration of the load balancing policy..

Maglev is Google’s network load balancer. It is a large
distributed software system that runs on commodity Linux
servers [27].

function POPULATE
Initialize a set S
foreach i < N do

next[i ] ← 0
end
foreach j < M do

entry[ j ] ←−1
end
n ← 0
while n < M do

foreach i < N do
if n ≥ M then

return
end
c ← permutation[i ][next[i ]]
while S contains c do

next[i ] ← next[i ]+1
c ← permutation[i ][next[i ]]

end
entry[c] ← i
S insert c
next[i ] ← next[i ]+1
n ← n +1

end
end
end

Algorithm 1: Optimized Populate for Maglev Hashing
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5. Comparing the Performance and
Resource Consumption of Linkerd and Istio

5.1 Methodology and Configuration for Experiments

In our experiments, we tested Linkerd and Istio using the
Kinvolk benchmark suite. We used the latest stable versions of
both projects: Linkerd (with its default setup) and Istio
(configured minimally). The benchmark tests were done on a
Kubernetes cluster using the Lokomotive Kubernetes
distribution.

To ensure fair testing, we made sure the latency remained
consistent throughout the tests. Cloud platforms can have
varying performance, especially concerning networks, so
maintaining consistency is important for accurate
comparisons.

Our setup consists of the cluster havin 6 worker nodes, each
with s3.xlarge.x86 configuration (Intel Xeon 4214 with 24 cores
@ 2.2GHz and 192GB RAM) for running the benchmark app.
Additionally, there was a load generator node and a K8s master
node with the same configuration.

We tested both service meshes under three different loads: 20
requests per second (RPS), 200 RPS, and 2,000 RPS. For each
load, we ran multiple tests, each lasting 10 minutes, for Linkerd,
Istio, and a case without any service mesh. We reinstalled all
benchmark and mesh resources before each run. For the 20
and 200 RPS tests, we did 8 runs and excluded the 3 runs with
the highest baseline latency. For the 2,000 RPS test, due to time,
we did 7 runs and manually removed the run with the highest
latency for both Istio and Linkerd. (We have all the detailed
data if needed.)

It is imperative to understand that the service mesh is tested
by the Kinvolk framework in a distinct manner, and we
maintained its original configuration without any alterations.
Furthermore, the results we present incorporate impacts from
both the service mesh and the test configuration.
Consequently, while these metrics are not unequivocal, they
are significant for contrasting different options within the
same environment.

5.2 Result, Discussion and Analysis

The graphs below display the outcomes of our conducted
experiments. Each data point within these graphs represents
the average value obtained from five separate runs. The error
bars accompanying each point indicate the range of one
standard deviation from the mean. The bars themselves are
indicative of Baseline, Linkerd, and Istio. In a performance
comparison between Linkerd and Istio, two prominent service
mesh tools, Linkerd demonstrated a clear edge in several key
metrics. Remarkably, Linkerd consumed only 1/6th of the
memory that Istio did under the same conditions.
Furthermore, when evaluating CPU usage, Linkerd utilized
just 55% of the resources Istio required. In terms of
responsiveness, Linkerd proved to be more efficient, adding
only 1/3rd of the median latency that Istio introduced. These
findings suggest that Linkerd, in these scenarios, was more
resource-efficient and provided faster response times
compared to Istio.

Figure 7: Latency at 20 RPS

Figure 8: Latency at 200 RPS

Figure 9: Latency at 2000 RPS

Figure 10: Control Plane CPU Time (s)
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Figure 11: Data Plane CPU Time (s)

Figure 12: Control Plane Memory Consumption (Mb)

Figure 13: Data Plane Memory Consumption (Mb)

6. Conclusion, Recommendation and Future
Research Direction

In our comparison of Linkerd and Istio, facilitated through the
Kinvolk benchmark on a Kubernetes cluster, Linkerd
showcased better performance metrics in terms of memory
consumption, CPU usage, and latency. It’s pertinent to
mention that Istio leverages the Envoy proxy, which we have
adapted to offer encryption-as-a-service. Based on these
modifications, it’s anticipated that a hybrid service mesh

combining the strengths of both will result in CPU usage that
is even lower than both standalone Linkerd and Istio. Hence,
organizations aiming for resource efficiency and faster
response times should consider the potential of this hybrid
mesh. Nevertheless, considering the specificities of our test
environment and configurations, we recommend
organizations to undertake pilot tests aligned with their
unique requirements before a full-fledged
implementation.The prime focus of upcoming studies should
be on refining the hybrid service mesh to achieve even lower
latency while maintaining or enhancing other performance
metrics.
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