
Proceedings of 14th IOE Graduate Conference
Peer Reviewed

Year: 2023 Month: December Volume: 14
ISSN: 2350-8914 (Online), 2350-8906 (Print)

Decentralized File Storage System for Web3 with IPFS

Sandesh Pokhrel a, Nischal Bhattarai b, Rupesh Shrestha c, Kumar Tiwari d, Binod Sapkota e

a, b, c, d, e Department of Electronics and Computer Engineering, Thapathali Campus, IOE, Tribhuvan University, Nepal
� a sandesh.pokhrel33@gmail.com, b bhattarai.nischal010@gmail.com, c shrestharupesh02@gmail.com, d linux.user6969@gmail.com, e

replybinod@gmail.com

Abstract
The internet is at the core of everything today. People use the internet in every aspect, exchanging crucial data for various services
online. These services are free to use, but only after complying with data policies. Companies like Facebook, Google and Tiktok
make billions from user data, and most do not realize how much data these services collect or what they use it for. Using Web3
[1] technologies such as blockchain and IPFS (InterPlanetary File System), a decentralized storage mechanism is created that is
controlled exclusively by the user. The use of blockchain ensures that data is stored securely, with no single entity having control
over it, using various mathematical functions to cryptographically secure and verify data among many users. IPFS provides a
decentralized file storage system that facilitates the sharing of data without the need for a centralized server. With the combination
of blockchain and IPFS, a user-controlled decentralized storage mechanism is created. The system provides the user with complete
control over their data, ensuring that it is only accessible to those who have permission. The user has the option to share their
data with others or keep it private; the choice is entirely up to the user. The system splits a file into smaller parts and generates
unique hashes. These hashes are stored on the blockchain for later retrieval, ensuring file integrity. AES is used for encryption, with
a symmetric key for private uploads and a public key for public uploads. Passing the content ID (CID) and encryption key to the
recipient ensures that only the intended recipient can access the file. Performance evaluation was based on system responsiveness,
data integrity, and confidentiality compared to centralized storage systems.

Keywords
Blockchain, Data policies, Decentralized storage, IPFS, Web3

1. Introduction

In recent decades, the control of personal data has been
monopolized by major companies. These firms collect an
immense amount of data through their cloud services, and
customers are left in the dark about how their data is being
utilized. Blockchain [2], instead of granting authority to a
single person or organization, employs multiple mathematical
functions to cryptographically encrypt and verify our data
across numerous users. It enables a technique to not rely on a
single centralized server but to utilize mathematics and a
number of computers storing a copy of a ledger to verify
transactions among them. Among several existing
blockchains, Ethereum is a flexible, programmable blockchain
that permits the development of advanced smart contract
systems, enabling decentralized applications that go beyond
simple financial transactions.

IPFS1 is a decentralized file storage system that is well-suited
for use in the Web 3.0 context. IPFS enables the storage and
retrieval of massive files and data on a peer-to-peer network
without the need for a centralized server. IPFS maintains data
across numerous nodes in the network, making it resistant
to censorship, data loss, and single points of failure. Files
are identifiable by their content rather than by their location,
which means that the same file is stored on numerous nodes
and accessed from anywhere in the network.

The implemented system supports client-side file uploads
that are initiated by users, who can choose between public

1InterPlanetary File System

and private modes. Files are transferred to IPFS via an IPFS
node client in the event of public uploads, with vital file
characteristics like name, size, and the resulting CID2 securely
recorded in a public upload contract placed on the testnet.
User-uploaded files are encrypted in private mode using a
randomly generated key, which is then encrypted with the
user’s public key and safely stored in the private upload
contract. Sharing files is facilitated by sharing the CID directly;
however, for private files, the owner uses key decryption and
re-encryption for easy file access by shared users.

Our contributions are as follows:

• We have integrated Web 3 technologies to create a
distributed file storage system where the user has full
control over the data.

• We have analyzed encryption and decryption algorithms
to ensure efficient file sharing and storage that is robust
to data changes and loss.

2. Background and Related Works

2.1 Blockchain

Bitcoin, introduced by Satoshi Nakamoto [3], made its way
into the mainstream as a peer-to-peer electronic transaction
system. Bitcoin provided a way to not rely on anyone specific
but on the nodes as a whole. It gave an explanation of how to
initiate a transaction, how to verify it, how to add it to a block,

2Content Identifier

Pages: 174 – 179



Proceedings of 14th IOE Graduate Conference

etc. With the popularity of bitcoin came its limitations. The
Bitcoin network was hard to program for new systems to be
built upon it.

As a solution, the Ethereum [4] blockchain was created, which
introduced the concept of programming the blockchain.
EVM3, which runs smart contracts (programs of EVM) after
using a compiler named Solidity. With the use of smart
contracts, many new crypto tokens were created and
transferred among various accounts existing on the
blockchain. With this, decentralized applications are created
on top of the blockchain embedded with immutable contracts,
storing things that cannot be changed by anyone or creating
contracts that are carried out automatically when certain
events are triggered.

2.2 Decentralized Storage

The concept of decentralized storage of data started with
BitTorrent [5]. With BitTorrent, accessing a single file from
different servers, which don’t have any central point of control,
is possible. For that, a torrent file, which consists of data about
where the file is located, is needed. The file is broken down
into pieces, and each node keeps a certain piece of it. And
when someone wants to access the file, a torrent file is needed
to know where that file is located. It surely paved the way for
decentralized file storage. But still, the problem of that data
being modified exists, and the privacy of that data is not
maintained.

After nearly a decade of BitTorrent, IPFS [6] made its way into
decentralized storage by solving the problem of data
modification through the use of content-based addressing.
IPFS is a new and innovative decentralized file storage system
that has been designed to work on the Web 3.0 architecture. It
is designed to provide a fast, efficient, and secure way of
storing and sharing data online. The IPFS network allows
users to store and access data in a peer-to-peer manner rather
than relying on centralized servers. This means that data is
distributed across a large number of nodes, making it much
more resilient and secure than traditional centralized systems.

2.3 Advanced Encryption Standard

The AES4 [7], introduced in 2001 and specified by the NIST5,
operates on a fixed block size of 128 bits and supports key
sizes of 128, 192, and 256 bits. The algorithm works by
dividing the plain text into blocks and then applying a series of
transformations to each block using a secret key. The
encrypted blocks are then concatenated to form the cipher
text.

2.4 Elliptic Curve Cryptography

ECC6, which uses the mathematics of elliptic curves to
generate secure key pairs for public key encryption, has
become popular due to its smaller key size and ability to
maintain security, which are based on the algebraic structure
of elliptic curves over finite fields, as shown by [8, 9]. The

3Ethereum Virtual Machine
4Advanced Encryption Standard
5National Institute of Standards and Technology
6Elliptic Curve Cryptography

security of ECC is based on the hardness of solving the
ECDLP7, which is considered computationally infeasible for
large values of the key size.

2.5 Prior Works on Decentralized Storage with
Blockchain

V. Sarasvathi et al. [10] demonstrated a system in which the
medical reports are saved on IPFS and the hashes of the files
are saved on the blockchain to store patient medical reports
for privacy issues. It reduced the usage of blockchain, which
reduces costs, and since blockchain is immutable, the patient
file can never be lost.

Shuije Cui et al. [11] have proposed to create a storage system
that takes care of securing the files by using encryption that
treats the storage system as malicious, and only the owner and
shared user can access the data. The concept of a master key
and secondary key was used; the master key remains with a
proxy server, and the secondary key is shared with the user.
This way, even if the proxy server wants to decrypt the file, it
cannot. But files were stored on a centralized server, which
only took care of privacy.

3. Methodology

Due to the remarkable advances in blockchain, a shared drive
based on it offers secure alternatives to centralized servers. In
contrast to the work of V. Sarasvathi et al. [10], our system
provides a user-controlled, shareable drive. Shuije Cui et al.
[11] were able to demonstrate a similar system only on paper
without analyzing system performance, and this was based
on centralized servers. Their work inspired the creation of a
robust storage system that is truly decentralized and shareable.
Our system demonstrates the integration of access control
mechanisms where files are managed in the file hierarchy.

Using the underlying peer-to-peer file storage protocol
embedded in the blockchain, a decentralized storage system
that provides users with full control over their data was
created. Users can publish files publicly or privately and share
them among themselves. All file-related operations happen
on the client side due to privacy issues. The CID of the file
returned from IPFS was stored in a blockchain smart contract.
A smart contract records each user’s uploaded CID and file
name in its state variable. And it makes an array of files for
each user. It utilizes mapping types and structures to make it
possible. Also, another smart contract gives the user the ability
to store encrypted files in the IPFS and store the key and IV8.

3.1 System Block diagram

After a file is uploaded, all operations are performed by the
interface block, which is client-side, prior to storing it in IPFS.
Only the minimum details for file pointers remain in the
blockchain. On the blockchain, interaction is accomplished
through two methods: making a transaction call or a view call.
A transaction call is used to execute a function that changes
the state of the blockchain, whereas a view call returns the

7Elliptic Curve Discrete Logarithm Problem
8Initialization Vector

175



Decentralized File Storage System for Web3 with IPFS

Figure 1: System Block Diagram

current state of the blockchain without modifying it. When
making a transaction call, it is essential to note that it requires
spending gas fees, which are paid in ether. The user can query
data from the blockchain first, then retrieve the actual file
from IPFS. The transaction function block is the actual call to
the blockchain for storing the requisite details in a blockchain
smart contract. View call observes the state of the blockchain
to retrieve information from the blockchain, which doesn’t
require a gas fee.

3.2 File Encryption/Decryption

Figure 2: File Encryption/Decryption

A random key and IV are produced when a user uploads a file
in order to encrypt it on the client side. The addition of an
IV is crucial for the AES algorithm’s implementation. Prior to
encryption, a block of binary data known as the IV is added
to the plaintext, increasing the security of the final encrypted
communication. IV was used, which had a 12-byte size and
was produced using a special function called getRandombytes.

The encryption procedure is initiated by generating an
encryption key and the IV using a random number generator
function. Subsequently, the target file was encrypted using the
AES-GCM9 algorithm, a capability efficiently provided by the
Webcrypto API10 incorporated within web browsers. The
resulting encrypted file was then securely stored on IPFS,
while the encryption key and IV were safeguarded within a
smart contract. This was accomplished by encrypting these
sensitive components using the ECC [12, 13] which derives the
public key associated with the Ethereum private key.

Upon the user’s request to download the encrypted file, the
matching encryption key and IV were received from the smart
contract, connected with the unique CID. Subsequently, these

9AES-Galois/Counter Mode
10Application Programming Interface

recovered components underwent decryption using the user’s
private key. The file of interest was then fetched from IPFS
using the corresponding CID. The final stage included the
decryption of the file using the IV and key using the
Webcrypto API. The successfully decrypted file was then made
accessible for download and restored to its original form
within the user’s file system. This technique, incorporating
AES encryption, IPFS storage, and secure key management,
protects the confidentiality and integrity of data during both
storage and retrieval activities, thereby matching strong
security procedures in current data handling situations.

3.3 File Sharing among users

Figure 3: File Sharing among users

When a user intends to share a file, it’s essential to determine
whether the file is accessible privately or publicly. If it is a
privately uploaded file, the process involves providing the CID
along with the encryption key that was utilized to secure the
file. To ensure the security of this key during transmission, it is
encrypted using the recipient’s unique public key. This
cryptographic approach guarantees that only the intended
recipient, holding the corresponding private key, can decrypt
and obtain access to the key, thereby unlocking the file.
Subsequently, the recipient can utilize their private key to
decrypt the key and, in turn, access the contents of the file.

In contrast, for publicly uploaded files, only the CID associated
with the file is shared. Consequently, anyone in possession of
this CID has the ability to access the file without the need for
additional encryption keys or authentication measures.

3.4 File Hierarchy

In a decentralized storage system, a file hierarchy system was
established through a backend server. The files themselves
are stored within IPFS, and their unique identifiers (CIDs) are
retrieved from IPFS and employed by the backend to construct
the file hierarchy. A database was implemented to monitor
folder-CID associations, facilitating the creation of a multi-
level file hierarchy.

Users initiate the process by uploading a file to IPFS, which
returns a corresponding CID. This CID is subsequently linked
to a folder within the backend. Users can also generate new
folders and associate them with CIDs, expanding the

176



Proceedings of 14th IOE Graduate Conference

Figure 4: File Hierarchy

hierarchical structure. Logical hierarchy refers to the concept
of constructing a file hierarchy without actually preserving the
file. Arrays and CIDs were used to create folders that contain
the files. When users desire to access a file within this system,
the backend queries the database to retrieve the associated
CID and uses it to access the file from IPFS.

A decentralized storage system employs a backend interface to
construct and administer a file hierarchy stored in IPFS. CIDs
from IPFS are pivotal in associating files with folders, thus
facilitating a multi-level file hierarchy. Additionally, a database
maintains folder-CID relationships, and user interaction with
the file hierarchy is facilitated via a web-based frontend that
communicates with the backend.

4. Experiments and Results

This section describes the detailed procedures for smart
contract testing and deployment, key generation, encryption,
decryption, uploading, and sharing of files using IPFS.

4.1 Smart contract deployment and testing

Two smart contracts were developed on the Ethereum testnet,
and unit testing was done in the following ways:

a) PublicUpload Contract Testing

i. Adding CID to Contract

The transaction was tested to add the CID returned from IPFS
to the contract. The test checked if the length of the userCID
array changed and verified that the CID mapped to the
filename.

ii. Removing CID from Contract

Testing involved the removal of CID from the contract. To
optimize gas usage, only the CID and name were removed from
the index, leaving a blank array entry. The test confirmed that
the array at the deleted index contained empty string values,
as expected.

iii. Sharing File with Other Users

In this test, two accounts were utilized: one as the owner and
the other as the recipient. Both accounts were provided by
brownie.accounts. The sharewithother function was called
from accounts[0], passing accounts[1] as an argument.
Afterward, it was asserted that the CID was successfully added
to sharedwithuser, and the test passed.

b) PrivateUpload Contract Testing

i. Adding Public Key of User

For this test, the public key was extracted from MetaMask using
the getEncryptionPublicKey function of the MetaMask API.
Then, the addpublickey function was called with the public
key as an argument to verify whether the public key had been
successfully added for the user.

ii. Adding CID Along with Key and IV

For privately uploaded files, it was necessary to store the key
and IV along with the CID. Initially, the file details were added,
and then it was asserted that all details for the file were
correctly transacted.

iii. Sharing File with Others

As this is a unit test, the file and key were added for sharing
without decrypting and re-encrypting, which requires access
to the MetaMask API provided by the browser window. After
calling the sharewithother function, confirmation was sought
that file details had been added to getsharedwithuser.

4.2 Key generation

a. Connecting MetaMask Wallet

Upon connection, the site gains access to the MetaMask
account number and establishes a blockchain connection via
the MetaMask interface.

b. File List

A table displays user-uploaded files, retrieved directly from the
blockchain using the user’s account value. The smart contract
function for that is GetUserCID(user account address). It
provides an array of files uploaded by the user. In the public
upload contract, this function returns a file array with each

Figure 5: The GetUserCID function for public upload on
Goerli Etherscan

177



Decentralized File Storage System for Web3 with IPFS

element containing a name and CID data. In the private
upload contract, it returns an array of file lists, with each
element having a CID, name, key, and IV attribute.

c. File Deletion

An option allows for file deletion from the blockchain.
RemoveCID(string CID): This function removes file details
associated with the given CID from the blockchain contract.

Figure 6: The RemoveCID function on Goerli Etherscan

4.3 Public and Private File Upload/Download

In public mode, users select and upload files from their systems
using an IPFS client, preserving file integrity. The resulting CID
is stored in the publicupload.sol contract for downloads.

AddCID(string CID, string name): This function takes a CID
and the name of a file and writes them into the blockchain. It
requires user fee approval.

Figure 7: The AddCID function in the public contract on
Goerli Etherscan

In private mode, users select files, upload them, and send
them for encryption using AES with randomly generated keys
and IVs. Encrypted files are uploaded via an IPFS client, and
the CID, along with encryption parameters, is saved in the
privateupload.sol contract for future downloads. Upon
download requests, files are retrieved, decrypted using the
corresponding key and IV, and made available for download.

AddCID(cids,name,key,IV): key and IV are encrypted using the
user’s public key and only passed as parameters in the AddCID
function in privateupload contract.

4.4 File Sharing

The user can select a specific file for sharing; the following
function will be utilized for sharing files:

ShareWithOther(user account address, CID): This function
shares a file with the specified CID and a given user account
address. In the public contract, only CID is required, but in the
private contract, additional arguments, including key and IV,
are needed.

Figure 8: The ShareWithOther function on Goerli Etherscan

5. Result Analysis

For key and IV generation, the WebCrypto API is utilized, and
since it is on the user side, it is manageable for small amounts
of files that are uploaded by the user. For encryption and
decryption, the system is able to handle about 1GB of files
without issue since it is on the client side. But for larger files,
chunking should be done to encrypt chunks of data and create
the whole file in encrypted form so that the system doesn’t
have any issues due to the large file sizes in memory.

The system consists of more client-side operations for file
encryption and decryption. Analysis was done for the
required timing of encryption and decryption of the file using
the AES algorithm on the client side. Following were the
results that were found.

Based on file type

It is observed that specific file types exhibit varying durations
in the encryption and decryption process. Audio files require
the most time, whereas text files require the least. The graph
below, extracted from the same paper, illustrates the
encryption time while maintaining other parameters, such as
file size, nearly constant.

Figure 9: Encryption Time Comparison

Figure 10: Decryption Time Comparison

178



Proceedings of 14th IOE Graduate Conference

Based on file size

The encryption time in AES increases proportionally with the
key size employed. It is evident that encryption time
experiences exponential growth with key sizes of 192 and 256,
while for a key size of 128, the encryption time rises more
gradually in comparison to the others [14]. Consequently, for
larger files, a key size of 128 is the preferred choice. As the
packet size (file size) increases, the encryption time of the file
increases exponentially, making it obvious that large key sizes
consume more energy. Cryptosystems have a problem with
high energy consumption, and this trend is used to increase
system responsiveness and efficient energy consumption.

Figure 11: Encryption Time vs Packet size

AES vs other Symmetric algorithms

AES stands out in security due to its larger 128-bit block size,
surpassing other symmetric encryptions like DES11 and 3DES
with their 64-bit blocks. This larger block size boosts AES’s
resilience against brute force and differential cryptanalysis
attacks. In terms of speed, AES outperforms other symmetric
encryption methods, particularly in software
implementations. Its implementation complexity is simpler,
thanks to well-documented processes and efficient software
and hardware support [15]. AES excels in security, speed, and
ease of implementation. This makes it a top choice for secure
data transmission and storage in applications like internet
banking, e-commerce, and online communication.

Comparison with Centralized Storage System

The system uses a smart contract for storing user file pointers
and IPFS for file storage, and uses AES and public key
cryptography for encryption and sharing. Centralized storage
systems lack native encryption and decryption capabilities,
allowing users to maintain control over their data storage and
share files without third-party access. To address this problem,
a system was developed that uses the AES algorithm for
client-side encryption and decryption. The key was encrypted
with the user’s public key and the file was uploaded to IPFS,
providing a unique identifier (CID). To move away from a
centralized system, blockchain smart contracts were chosen

11Data Encryption Standard

to store the user’s file CID and encrypted key. This ensures
that users cannot decrypt files without the file owner’s private
key, a key issue in centralized systems. Additionally, the CID is
generated based on the contents of the file to ensure that file
integrity is not compromised. The immutable nature of user
CIDs in smart contracts ensures that file integrity is not
compromised by changes in file content.

6. Conclusion

A file system developed using blockchain as a pointer to data
stored using IPFS provides a platform for private or public
data uploads into IPFS. The deployment of smart contracts,
content-based addressing, and encryption techniques
enabled a robust and secure alternative to centralized file
storage systems, empowering users to manage their data on
their own terms while ensuring data integrity and
confidentiality. Implementation of access control
mechanisms provided legitimate users with access to
resources in a well-defined manner. Integrating the system
with other blockchain networks can further enhance the
security and transparency of the file storage system.

References

[1] Kravtsov. Semantic web and web 3.0. 21, 2019.

[2] Melanie Swan. Blockchain: Blueprint for a New Economy.
O’Reilly Media, 2015.

[3] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. 2009.

[4] Vitalik Buterin. Ethereum whitepaper. 2014.

[5] Jahn Arne Johnsen, Lars Erik Karlsen, S. S. Birkelan, and
Sebjorn Saether Birkeland. Peer-to-peer networking with
bittorrent. 1(2):1–22, 2005.

[6] Juan Benet. Ipfs - content addressed, versioned, p2p file
system. 1(3), 2019.

[7] F. Pub. Advanced encryption standard (aes). 2001.

[8] Mohammed, Abdalbasit, and Nurhayat. Varol. A review
paper on cryptography. 1(1), 2019.

[9] J.H. Silverman, Jill Pipher, and Jeffrey Hoffstein. An
Introduction to Mathematical Cryptography. Springer,
2008.

[10] Pearl Alisha Lobo and V Sarasvathi. Distributed file
storage using ipfs and blockchain. 1(1):1–6, 2021.

[11] S. Cui, Asghar, M. Rizwan, and Russello Giovanni.
Towards blockchain-based scalable and trustworthy
file sharing. International Conference on Computer
Communication and Networks (ICCCN), 1(1):1–2, 2018.

[12] Whitfield Diffie and Martin E. Hellman. New directions
in cryptography. 1(1), 2019.

[13] Ralph C. Merkle. A digital signature based on a
conventional encryption function. 1987.

[14] Haque, M. Enamul, Zobaed, Sm I. M. Usama, and M.Areef
Faaiza. Performance analysis of cryptographic algorithms
for selecting better utilization on resource constraint
devices. 1(1), 2018.

[15] Shraddha More and Rajesh Bansode. Implementation of
aes with time complexity measurement for various input.
Global Journal of Computer Science and Technology, 15(4),
2015.

179


	Introduction
	Background and Related Works
	Blockchain
	Decentralized Storage
	Advanced Encryption Standard
	Elliptic Curve Cryptography
	Prior Works on Decentralized Storage with Blockchain

	Methodology
	System Block diagram
	File Encryption/Decryption
	File Sharing among users
	File Hierarchy

	Experiments and Results
	Smart contract deployment and testing
	Key generation
	Public and Private File Upload/Download
	File Sharing

	Result Analysis
	Conclusion
	References

