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Abstract
For a variety of reasons, including the challenge of grid extension, standalone hybrid energy systems are an enticing option for
electrifying remote areas. As a result, important fields of power system research have emerged around the idea of the microgrid and
micro-grid control strategies. The island microgrid is made up of numerous power inverters and different kinds of power equipment.
System instability may result from the interaction of inverters with various control strategies, which will lead to malfunctions in the
power equipment. Therefore, in order to enable parallel operation while maintaining system stability, an appropriate control strategy
must be implemented. The development of a mathematical model for parallel connected Voltage Source Inverters (VSI) using a
traditional droop control strategy is the main goal of this study. The system’s linear state space model has been constructed. The
parameter sensitivity for the stability has been examined because the loading, controller, and system parameters all affect the small
signal stability of the system. After that, the suggested model was constructed using MATLAB/SIMULINK, and the outcomes of
electrical system simulation and mathematical modeling were contrasted. The sensitivity to controller gain parameters and the
eigenvalue analysis have been examined. A 3 kVA linear load has been taken into consideration for a parallel inverter system.
Additional load of 1 kVA have been added to study the system stability on load perturbation.

Keywords
VSI, Small Signal Stability, Parallel Operation

1. Introduction

The island microgrid is composed of many inverters and
various types of power equipment, and the interaction
between inverters with different control methods may cause
system instability, which will cause the power equipment to
malfunction [1]. Therefore, practical strategies for analyzing
the stability of the microgrid system have become particularly
important [2]. The influence of the control parameters on the
system’s behavior can be studied using the proposed state
equation model, which will obtained from the small signal
analysis. In islanded AC microgrids, three-phase
droop-controlled inverters are widely employed as power
interfaces of DGs [3]. Since the active power-frequency and
reactive power-voltage amplitude droop control scheme is
applied, automatic power sharing between parallel inverters
can be achieved independent of communication [4]. However,
the output impedance of the inverter plays and import role in
power sharing in droop controlled inverters [5].

Several renewable energy-based distributed generators are
operated in parallel through DC-AC converters with having
individual control loops with various control strategies. Thus,
the dynamic stability problem in microgrids becomes more
significant due to many power converters. Power electronics
system dynamic stability has been researched for a long time.
Small-signal models are frequently used since it is crucial to
understand how a system reacts to different changes. The
dynamics characteristics and the intraction between the power
electronic devices in the system are studied using small signal
analysis. The study is done by synthesising the system around
a specific operating point. In order to choose the control loop
parameters, frequency domain or time domain methods are

often used. This makes it a necessary and unavoidable task for
system designers.

A systematic approach to petite signal modelling and control
design of three-phase pwm inverters in early 1993 [6].
Similarly, the design of the output impedance of UPS inverters
with parallel connection capability with small signal
modelling have been performed in [5, 7]. An important
contribution has been made on modeling and analysis of
autonomous operation of inverter-based micro grids by
modelling each sub module in state space and all combined in
common reference frame [8]. The small signal modelling and
analysis for parallel connected voltage source inverters in
frequency domain have been performed in [9]. The small
signal modelling of digitally controlled grid connected
inverters with LCL filters [10, 11]. This study is based on the
droop control method in microgrid. The small signal analysis
of parallel connected voltage source inverters using frequency
and voltage droop control, including an additional phase shift,
has been studied on [12]. The small signal modelling of three
three-phase isolated inverter with both voltage and frequency
droop control [13]. Similarly, an accurate small single model
of inverter-dominated islanded microgrids using a dq
reference frame has been performed on [14].

The parallel-operated voltage source inverter small-signal
model presented in this study can be utilized to construct the
control loop and analyze the system’s stability. The droop
method has been widely used in the parallel operation of
inverters. The coefficients of the droop controller and the gain
of voltage and current loop controller influence the transient
response and stability of the paralleled inverters system. This
study have compared the results from the mathematical
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modeling and that from the electrical simulation of actual
system. Most of the study are focused on developing
mathematical model and testing the system in real time or
simulation basis. However, this study presents a comparison
on the linear model and the simulation model side by side.

A mathematical model is presented in section II, where the
variations in output d-q axis voltages and currents are taken
into account as state variables, the variations in power
inverter duty cycles and frequency are considered as the
control input, and the variations in DC power source voltages
are used as external disturbances. However, the effect of
power source voltage has yet to be considered in the analysis.
Linear model and Control strategy and a model of a general
control system are discussed in subsection of section II. The
results are analyzed in section III, beginning with the model
verification, eigenvalue analysis, sensitive analysis and time
domain simulation.

2. Methodology

First of all the methodological framework for this work was
performed with the configuring the parallel inverters feeding
the load is shown in figure 1. Figure 1 shows the two parallel
inverters feeding load with individual coupling impedance.
Individual VSI have their own voltage and current control loops
with droop control strategy. The VSI consists of LC filter with
couping reactance to connect in parallel. As usual the load in
micro grid can vary, hence an additional load with a circuit
breaker has been used.

Figure 1: Parallel Inverter Connected with Load

2.1 Modelling of Parallel Inverters With Load

The coupling impedance and filter have the most
contributions to the inverter dynamics. A set of differential
equations given in equations 1 for voltage source inverter in
the dq0 frame [15] can be used to represent the LC filter.
Additionally, the inverter output provides the input voltage for
the LC filter. A gain element can be used to represent the
output voltage of the inverter in the dq0 frame of reference.
Figure 1 displays the general schematic of the load-connected
inverter system with an LC filter and a coupling impedance.
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Where, R f ,L f are filter resistance and inductance, C f is filter
capacitance and Rc ,Lc are the common point side coupling
resistance and inductance. I f d and I f q are dq component of
inverterside current, Vcd and Vcq are the filter capacitance dq
voltages and Iod and Ioq are the coupling reactor dq current.
The dq represent vector of [d1, q1], [d2, q2] for two inverters.
These are the state variable of the inverter filter and couping
reactance. The inverter is the combination of linear circuits
with non linear switching devices. Nevertheless, the
mathematical model of each individual switching circuit adds
complexity to the system analysis. The switching portion of
the inverter has been approximated in this study using the dq
equivalent form. The duty cycle is used as the input in each
frame to resolve the output from the inverter into the d and q
frames. Equations give the inverter’s output. The controlled
duty cycle, Vi d and Vi q , is used to generate the dq voltage
output from the inverter.

Vi d1 = dd1Ki nv Vdc1 (2)

Vi q1 = dq1Ki nv Vdc1 (3)

Vi d2 = dd2Ki nv Vdc2 (4)

Vi q2 = dq2Ki nv Vdc2 (5)

(6)

where dd1,dq1,dd2,dq2 are the dq equivalent of duty cycles.
The duty cycle is obtained from the voltage control loop. Vdc

is the input dc voltage, ki nv is duty cycle gain also called as
Pulse Width Modulation (PWM) gain. The switching circuit
of inverter have been represent as gain or first order system
have been mentioned in several studies such as [16, 17, 18].
The small signal stability research in this work has ignored
the dynamics of the inverter’s switching and snubber circuits.
However, MATLAB/SIMULINK has also been used to build
the detailed model with switching circuits for the filter and
inverter circuits. By linearising the large signal time average
model around the specified beginning point, the small signal
model of two parallel voltage source injectors may be derived.

2.2 Modelling of Load

According to Eq. (15) [8], the algebraic equation in the dq0
frame represents the relationship between the load’s current
and voltage.

Vod = (iod1 + iod2)RL − (ioq1 + ioq2)XL

Voq = (iod1 + iod2)XL + (ioq1 + ioq2)RL
(7)

Pload = 1.5(Vod (iod1 + iod2)+ voqs((ioq1 + ioq2)))

Ql oad = 1.5(Voq (iod1 + iod2)− vod s((ioq1 + ioq2)))
(8)
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where RL and XL are the load resistance and inductive
reactance. Based on the load’s active and reactive power,
Pl oad and Ql oad , respectively, RL and XL are computed. The
load resistance and reactance at full loading are computed as

Inom = Sbasep
3×Vnom

RL = PL

3× I 2
nom

XL = QL

3× I 2
nom

(9)

where, Sbase is rated system (addition of capacities of
individual inverters) Inom is nominal current for rated power,
PL and QL are the load active and reactive power. RL and XL

are the equivalent load reistance and reactance for rated
power.

2.3 Modelling of Controller

This study has taken the conventional droop control strategy
for the inverters connected in parallel. Individual inverters are
provided with voltage controller and current controller along
with droop controller as shown in figure 2. The active and
reactive power sharing between the inverters can be
controlled by angular frequency and voltage magnitude
difference between them. The angulare frequency is realted to
active power sharing while the voltage magnitude is related to
reactive power sharing. The angular frequency and reference
voltage can be generated using the equation 10.

ω1 =ω0 −m1 ×P1

Udr e f 1 =Vr e f 1 −n1 ×Q1

ω2 =ω0 −m2 ×P2

Udr e f 2 =Vr e f 2 −n2 ×Q2

(10)

where, Vr e f 1 and Vr e f 2 are the reference voltage of the system

which equivalent to Vnom ×
√

2
3 . Moreover, the m1,m2 are the

active power droop coefficents and n1,n2 are the reactive
power droop coefficent. Additionaly, P1,P2 are the active
power measured and Q1,Q2 are the reactive power measured
and can be calculated by using 11.

P1 = 1.5× (Vcd1Iod1 +Vcq1Ioq1)

Q1 = 1.5× (Vcd1Ioq1 −Vcq1Iod1)

P2 = 1.5× (Vcd2Iod2 +Vcq2Ioq2)

Q2 = 1.5× (Vcd2Ioq2 −Vcq2Iod2)

(11)

Figure 2: Block diagram of the droop control strategy adapted
from [19]

2.3.1 Voltage Control Loop

The block diagram of voltage control loop is shown in above
figure 2. This makes inverter output voltage reference tracking
loop for output power given. It is responsible for maintaining
system voltage. This control loop generates reference current
signals which are supplied to the current control loop. For this
output reference voltage (d component) from the droop
controller is compared with the inverter output voltage and
then the error is minimized by PI controller and then the
obtained output is compared with inverter output Iod and
VcqωC f . to generate reference current signal. Similar
operation will occur for quadrature (q) component. The
equation associated with voltage control loop are shown
below:

id1,r e f = Kpv1(Vr e f ,d1 −Vcd1)+Ki v1

∫
(Vr e f ,d1 −Vcd1)d t −ωC f Vcd1 + Iod

iq1,r e f = Kpv1(Vr e f ,q1 −Vcq1)+Ki v1

∫
(Vr e f ,q1 −Vcq1)d t −ωC f Vcq1 + Ioq

id2,r e f = Kpv2(Vr e f ,d2 −Vcd2)+Ki v2

∫
(Vr e f ,d2 −Vcd2)d t −ωC f Vcd2 + Iod2

iq2,r e f = Kpv2(Vr e f ,q2 −Vcq2)+Ki v2

∫
(Vr e f ,q2 −Vcq2)d t −ωC f Vcq2 + Ioq2

(12)

2.3.2 Current Control Loop

The block diagram of current control loop is shown in above
figure. This improves dynamic response of system to enhance
the system’s anti-disturbance ability and provide even over
current protection. This control loop generates reference
voltage signal in dq form which are used as the reference
signal in PWM after converting into abc frame. For this output
reference current in (d) component from the current control
loop is compared with the inverter output current and then
the error is minimized by PI controller and then the obtained
output is compared with inverter output Vcd and IoqωL f . to
generate reference voltage signal. Similar action will occur for
quadrature component. The equation associated with current
control loop are shown below:

dd1 = Kpc1(Id ,r e f 1 − I f d1)+Ki c1

∫
(Id ,r e f 1 − I f d1)d t −ωL f Id ,r e f 1 +Vcd1

dq1 = Kpc1(Id ,r e f 1 − I f d1)+Ki c1

∫
(Id ,r e f 1 − I f d1)d t −ωL f Iq,r e f 1 +Vcd1

dd2 = Kpc2(Id ,r e f 2 − I f d2)+Ki c2

∫
(Id ,r e f 2 − I f d2)d t −ωL f Id ,r e f 2 +Vcd2

dq2 = Kpc2(Id ,r e f 2 − I f d2)+Ki c2

∫
(Id ,r e f 2 − I f d2)d t −ωL f Iq,r e f 2 +Vcd2

(13)

2.4 Linearization and State Space Model

Small-signal stability is the outcome of the equation’s
linearization, which simplifies analysis under disturbance on
the steady state or specific initial condition [20, 21]. Generally
speaking, variations in loads and parameters (like the
switching of small-capacity loads) are referred to as stochastic
small disturbances. The stability analysis of a system with
such small disturbances is often approximated by linear
models due to the small stochastic excitation [22]. As a result,
the linearized set of the equation simplifies the issue and aids
in the creation of control plans.
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2.4.1 Filter and Coupling Model

A generallized small signal model of a inverter is given as:
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2.4.2 Droop Equation

∆ω1 =−m1 ×∆P1

∆Udr e f 1 =−n1 ×∆Q1

∆ω2 =−m2 ×∆P2

∆Udr e f 2 =−n2 ×∆Q2

(15)

2.4.3 Power Calculation

∆P1 = 1.5× (∆Vcd1Iod1 +Vcd1∆Iod1 +∆Vcq1Ioq1 +Vcq1∆Ioq1)

∆Q1 = 1.5× (∆Vcd1Ioq1 +Vcd1∆Ioq1 −∆Vcq1Iod1 −Vcq1∆Iod1)

∆P2 = 1.5× (∆Vcd2Iod2 +Vcd2∆Iod2 +∆Vcq2Ioq2 +Vcq2∆Ioq2)

∆Q2 = 1.5× (∆Vcd2Ioq2 +Vcd2∆Ioq2 −∆Vcq2Iod2 −Vcq2∆Iod2)

(16)

2.4.4 Voltage and Current Controller

In Laplace domain, the linearized model of voltage and current
control loop can be merged and can be given as:

∆dd1 =∆Vcd1 +Hc1(((Vod ,r e f 1 −∆Vcd1)Hv1 +∆iod1 −∆ω1C f V∆cq1)−∆i f d1)−∆ω1L f ∆i f q1

∆dq1 =∆Vcd1 +Hc1(((Vod ,r e f 1 −∆Vcd1)Hv1 +∆iod1 −∆ω1C f ∆Vcq1)−∆i f d1)−∆ω1L f ∆i f q1

∆dd2 =∆Vcd2 +Hc2(((∆Vod ,r e f 2 −∆Vcd2)Hv2 +∆iod2 −∆ω2C f ∆Vcq2)−∆i f d2)−∆ω2L f ∆i f q2

∆dq2 =∆Vcd2 +Hc2(((∆Vod ,r e f 2 −∆Vcd2)Hv2 +∆iod2 −∆ω2C f ∆Vcq2)−∆i f d2)−∆ω2L f ∆i f q2

(17)

where, Hc1 = Kpc1 + Ki c1
s , Hc2 = Kpc2 + Ki c2

s , Hv1 = Kpv1 + Ki v1
s

and Hv2 = Kpv2 + Ki v2
s .

2.4.5 Open Loop Model

The set of differential algebraic equations mentioned in 14,16
and 15 can be represented in state space equation given as:

∆̇x = As∆x +Bs∆u +Fs∆v

∆y =Cs∆x +Ds∆u
(18)

where x is state variable vector, u is input vector and v is the
other input vector, mainly disturbance input. The state
variable vector for the parallel inveter is given as:

∆x = [
∆i f d1 ∆i f q1 ∆vcd1 ∆vcq1 ∆iod1 ∆i oq1 ∆i f d2

∆i f q2 ∆vcd2 ∆vcq2 ∆iod2 ∆i oq2
]

∆u = [
∆dd1 ∆dq1 ∆dd2 ∆dq2

]
∆v = [Vdc1Vdc2]

where, A = ∂ẋ
∂x ,B = ∂ẋ

∂u ,C = ∂ẋ
∂v at x = x0 respectively. where x0 is

the point of linerization. The subsript 1 represents the state
variables of inveter one and subscript 2 represents the state
variable of inveter two. The A matrix can be obtained by
differentiating the equations 1 with state vector. The A matrix
is given as:

A =
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The B matrix is given as:

B =



Ki nv Vdc1
L f

0 0 0

0 Ki nv Vdc1
L f

0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 Ki nv Vdc1
L f

0

0 0 0 Ki nv Vdc1
L f

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


This gives the open loop model of parallel inverter. The open
loop eigen values defines the stability of open loop model of
inverter. System eigenvalues can determine the small-signal
stability study of the system at any operating point. The small-
signal stability begins with finding the equilibrium or operating
point where the differential equation system is linearized, and
the state matrix is obtained. The eigenvalues are then obtained
from the state matrix with equilibrium point, i.e., eigenvalues
of A. By linearizing around an equilibrium point, the dynamics
of a non-linear system can be described.

2.4.6 Closed Loop Model

The parallel connected inverter are individually controlled by
the current controller and voltage controllers as mentioned in
section 2.3. The control diagram for the linearized model of
inverter and controller is shown as:

Figure 3: Control block of two parallel connected inverters
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The linear equation represented by equations 17 can be written
as:

U (s) = H(s)Xs (s)+ J (s)Rc (s) (19)

where, Xs (s) gives the laplace transform of state variables and
Rc (s) = [] The matrix H an R can be obtained as by rearranging
the equation given by 17.

H T =



−Hc1 −L f ω1 0 0
−L f ω1 −Hc1 0 0

−Hc1Hv1 +1 C f Hc1ω1 0 0
−C f Hc1ω1 −Hc1Hv1 +1 0 0

Hc1 0 0 0
0 Hc1 0 0
0 0 −Hc2 −L f ω2

0 0 −L f ω2 −Hc2

0 0 −Hc2Hv2 +1 C f Hc2ω2

0 0 −C f Hc2ω2 −Hc2Hv2 +1
0 0 Hc2 0
0 0 0 Hc2



(20)

J =


Hc1Hv1 0

0 Hc1Hv1

Hc2Hv2 0
0 Hc2Hv2

 (21)

In order to build a compete closed loop model, the has to be
merged. The state matrix given in 18 can be transformed to
laplace domain as:

sXs (s) = As Xs (s)+BsUs (s)+FsVs (s) (22)

From equation 22 and 19, we can write:

sXs (s) = As Xs (s)+Bs (H(s)Xs (s)+ J (s)Rc (s))+FsVs (s) (23)

Taking, Vs (s) = 0, the transfer function can be written as:

Xs (s)

Rc (s)
= Bs J (s)

sI − (As +Bs Hs )
(24)

The characteristices equation for the overall closed system is
given as:

P (s) = sI − (As +Bs Hs ) (25)

The solution of P (s) gives the eigen values of the overall closed
loop system.

2.5 Sensitivity and Stability Analysis

The system stability is defined by the Eigen value analysis of the
state space model presented for the system given by equation
25. System eigenvalues can determine the small-signal stability
study of the system at any operating point. The small signal
stability begins with finding the equilibrium or operating point
where the differential equation system is linearized, and the
state matrix is obtained. The eigenvalues are then obtained
from from solving the characteristics equation. The sensitivity
analysis is performed by varying the controller parameters
mainly gain of voltage controller Kpv and current controller
Kpc on closed system.

The proposed system of equation i.e the transfer function
given by 24 have been solved using the control system toolbox.
The eigen values are obtained by solving the characteristics
equation given in 25 using the solve function MATLAB.
Moreover, the electrical system with actual switching devices
has been modeled in SIMULINK and obtained the simulation
result of the system.

3. Results

The proposed model have been analysed using eigen value
analysis, frequency domain analysis and time domain
simulation.Two parallel inverters system is adopted as an
example, and the parameters of the system is listed in Table 2.
The system and equation and the simulation have been
performed for two different conditions viz. zero initial
condition and a steady state condition. When the system
reached to steady state condition, additional load of 100 kVA,
0.8 pf will be added in the system. The additional load will be
proportionally shared by two inverters. While analysing the
effect of load pertubation, eigen value analysis for the
lineraztion point is given in Table 1.

Table 1: Point of linearization

Inverter I
State Variable Ifd1 Ifq1 Vcd1 Vcq1 Iod1 Ioq1
Value 1.393 3.4699 326.355 0 1.393 -1.65

Inverter II
State Variable Ifd1 Ifq1 Vcd1 Vcq1 Iod1 Ioq1
Value 3.496179 3.1119 326.49 0 3.4961 -2.016

Table 2: Parameter Used in Analysis

Parameter Value Parameter Value

Vnom 400 V Inom
Pbasep
3×Vnom

Pbase 3000 W RL
Pload

3×I 2
nom

ω 377 r ad s−1 XL
Qload

3×I 2
nom

L f 0.1 H Ki nv 0.01
C f 1×10−4 F PLoad 2400 W
Lc 0.00125 H Ql oad 1800 Var
Rc 0.01Ω Kpv 0.577
R f 0.5Ω Ki v 1189.69
m 5×10−5 Kpc 1570.79
n 3×10−5 Ki c 157.07

3.1 Eigen Values and Sensitivity Analysis

The roots of the closed loop characteristics equations using
the initial point of linearization gives the eigen values of the
system. The eigen values gives the dynamics of system for any
disturbance in the system. Figure 4 shows the location of eigen
values in s-plane. The list of real and imaginary values of the

Figure 4: Dominant Closed Loop eigen values for Parallel
Inverter Connected with Load
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system is given in Table 3.

Table 3: Eigen Values of the closed loop system

S.N Real Value Imaginery Values
λ1 -140.173258 ±311.86
λ1 -5.7820802 ±13.04
λ1 -17.92 0
λ1 -12.5663 0
λ1 -10.8193 0
λ1 -28.57 0
λ1 0 0

The dynamical characteristics of the proposed parallel
inverter corresponds to an eigen values of the system. The free
response of the parallel inverter can be obtained by a linear
combination of the oscillatory modes determined by the eigen
values [23]. Theoretically, the obtained eigen values can also
appeared as very small values due to computational errors
which are written as zero.

Figure 4 shows the eigen values of the two parallel inverters.
The result shows that the system is stable in parallel
connection as all the eigen values lie on the left hand side of
s-plane. As the dominant eigen value consists of imaginery or
complex roots results in parallel operation oscillatory. This is
caused due to the power exchange between two parallel
inverters as the dynamics of one of the inverter effect on the
dynamics of other. The variation in the controller or system
parameter in any one other inverter system may cause the
system unstable. The variation in system or contorlller
parameter cause shift in eigen value loacation. In this study,
the controller parameter Kpv ,Ki v ,Kpc ,Ki c have been varied
for 20 percent that of nomial value used to observe the
stability performance for parallel inverter. The sensitivity for
the controller parameters has been shown in figure 5.

Figure 5: Dominant eigen values for Parallel Inverter
Connected with Load for the variation of controller
parameters

The stability range of the parallel inverter system and the

variation of the eigenvalues have been determined by
analyzing the eigenvalue trajectories. The system stability’s
sensitivity to the proportional and integral gain parameters of
the voltage and current controllers, Kpv ,Ki v ,Kpc ,Ki c , has
been taken into account. With increasing circle size in Figure
5, the parameters become more noticeable. The dominant
eigen values that lies near the imaginery line of s plane
possess the most contribution in system dynamics. As a result,
the sensitivity analysis has only displayed the dominant eigen
values. Unless specified otherwise, the parameter set from
Table 2 is used. As figure 5 illustrates, the system is
intrinsically stable within a specific voltage gain parameter
range, but becomes unstable at lower and even higher values
of Kpv . As the parameter value increases, the eigen values shift
from the left side of the s-plane to the right side. As figure 5
illustrates, the system is relatively less stable (long term
oscillation) for lower ranges of the current gain parameter, but
more stable when the voltage gain parameter, Kpv , is kept
constant. The left hand eigen values are changing.

3.2 Time Domain Simulation

To compare and verify the proposed parallel inverter model
with the droop controlled mode, the system of equation,
written as transfer function have been solved using inverse
transform. Moreover, the detail model of the inverter with
switching circuits are modelled in MATLAB/SIMULINK using
the simscape libraries. The parameters used of the simulation
is listed in table 2. Initially, the load of 3 kVA with 0.8 pf have
been used and simulated for 1 second. At simulation time of 1
second extra load of 1 kVA with 0.8 pf have been added in
system. The simulation runs for 2 seconds. The terminal
voltage reference for the system is taken as 326 peak
(equivalent to 400 V rms line to line).

3.2.1 For Zero Initial Condition

Initially, the simulation runs with zero initial condition. The
inverters share the load proportionally as per the droop
coefficents as shown in figure 6. The solution obtained from
both of the framework (electrical simulation from simulink
and linear simulation from inverse transfrom) are similar in
nature in the context active power and frequency of system.
However, the results slightly differs in voltage and reactive
power sharing. The system reached to steady state condition
after 0.4 seconds. The steady state load sharing from inverters
are about 1700 and 700 Watts. The reactive load sharing is
found to be 1200 and 700 Vars. The response for frequency
and voltage is shown in figure 7.

3.2.2 For Steady State Condition

At simulation time of 1 seconds, an additional load or 1 kVA
have been added. The mathematical model solution and
simulink result for active and reactive power sharing is shown
in figure 8. The variation of load result caused the inverter to
share load proportionally. However, the linear model and
simulink result slightly differs. This is due to the linear
apporoximation of the non linear system of linear equations.
The frequency and voltage of the system is shown in figure 9.
The frequency and voltage of the system slightly dipped in
response to the additional load in system.
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Figure 6: Active and Reactive power sharing between two
inverters linear solution and SIMULINK result

Figure 7: Angular frequency and terminal voltage of two
inverters with linear solution and SIMULINK result

Figure 8: Active and reactive power sharing between inverters
for the load variation at simulation time 1 second.

Figure 9: Frequency and voltage level of inveters for the load
variation of 1 kVA at simulation time 1 sec
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Figure 10: Instantaneous current and voltage waveform
obtained from SIMULINK for load variation

The instantaneous wave-forms of voltage and current is shown
in figure 10. The variation in load shows a smooth transition
from 6 A peak to 8 A peak with slight disturbance.

4. Conclusion

This study have presented the small signal model of parallel
connected inverters, performing the sensitivity analysis of
control parameters for maximum stability. The model can be
used to design the control loop and to study the system
stability. The small signal model of the inverter takes the filter
current and voltage and coupling reactance current as state
variables. These variables are than utilized by current and
voltage loop controllers. Two parallel inverter with different
droop coefficient values have been used. The result shows the
proportional sharing of load. The study is performed for both
zero initial condition and load perturbation in steady state
condition. The proposed mathematical models are used to
determine the eigen values at steady state points. Moreover,
the models are solved and the results are compared to that
from the actual system realized in simulink. Additionally, from
the study, we found that the controller parameter greatly
influence on the stability and performance. This study has
develop a framework to develop mathematical models of
parallel connected inverter which may help in deriving more
complex control strategies in future works.
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