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Abstract
In computer vision and image processing applications, segmenting an image becomes an important task. The primary aspect of
semantic segmentation is pixel-level labeling. In material science and Engineering, microscopy images show space information
of matter, materials’ morphology, phase, crystallography, magnetic structure, atomic structure, etc. Due to the complex pattern
of microscopy images in this field, there is still a challenge to segment the various sections of interest. In this work, the U-Net
architecture is used and this network is trained with high-resolution scanning electron microscope (SEM) images of activated carbon
derived from Rudraksha seeds. The architecture consists of two parts: one that is contracting and another that is expansive along
with skip connection. The Dice Coefficient is performed to evaluate the quality by matching the features with the ground truth
images. The batch size of four and five is found to have lower test loss of 41% and 39%. Learning rates of 0.00001 are found to
have the highest test dice acc of 61%, 62%, 64% at epoch 10, 50, and 150 respectively. Dropout of 0.2 rate slightly improves the
performance metrics. Epoch 450, 800, 1000, and 2000 are found to have significant improvement over model performance. At
epoch 800, the model achieves the best test dice score of 79 %. At epoch 2000 it achieves the best validation dice score 81%, the
best test dice score is 79%, and the best test accuracy is 91%. The result reflects that even though the best accuracy is low as
compared to the accuracy of the original paper (95%), the evaluated model can generate a segmented mask on the new unseen
dataset.
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1. Introduction

Image segmentation has become an important task in
computer vision and image processing applications.
Nowadays, it is widely used in a variety of fields, including
medical image analysis, robotics, autonomous driving,
augmented reality, video surveillance, and many more [1]. In
the medical field with the advancement of technology, it is
easy to capture medical images of different parts of the human
body. The most commonly used high-tech equipment for
capturing images are X-ray, ultrasound, Magnetic Resonance
Imaging (MRI), and Computed Tomography (CT) but to help
experts make better analyses and accurate diagnoses,
segmentation of vital objects and extraction of essential
features from captured images are necessary. A large number
of papers have been published recording the success of fully
automated segmentation of medical images based on deep
learning [2].

Deep learning is now being used more widely in microscopy
image processing for tasks like detecting nuclei, tissue
segmentation, cell segmentation, image classification, and
many others. Convolutional neural networks (CNNs) are the
more common deep learning architecture used in computer
vision and biological image processing tasks [3].

To look into the details of matter at the spatial scale of a
micron and to take microscopic images, imaging equipment
including optical microscopy, transmission electron
microscopy (TEM), scanning electron microscopy (SEM), and
scanning probe microscopy (SPM) is used. Real-time
information about matter, including the morphology, phase
with one another, crystal structure, magnetic structure, and
molecular structure of materials, is provided by microscopy
images. Material science also investigates the relationships
among chemical or physical attributes [4]. In the field of
material science, due to the rapid advancement in automation
in experimental equipment and the tremendous collection of
experimental and computational datasets; the size of publicly
available datasets has increased significantly. The Materials
Genome Initiative (MGI) and findable, Accessible,
Interoperable, Reusable (FAIR) principles also contributed a
lot. Because of this increasing volume of datasets, a fully
automated analysis must be necessary; deep learning comes
into play [5].

In this work, the datasets used are captured by Scanning
Electron Microscopy(SEM). To study the nature of pores and
their tentative concentration in SEM images of activated
carbon prepared at different temperatures; deep learning is
implemented.
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2. Literature Review

The process of separating an image into multiple areas, with
the desired region in one class and the other regions in a
different one, is known as image segmentation. In essence,
there are three methods for segmenting images: panoptic,
instance, and semantic segmentation. Pixel-wise labeling is
semantic segmentation, whereby each pixel is assigned to a
specified label. Through instance segmentation, every pixel
that is part of the regions of interest is distinguished. Semantic
and instance segmentation combine to form panoptic
segmentation. The objective is to give every pixel in an image
a distinct instance ID and a semantic classification. Image
semantic segmentation focuses on the pixel classification of
an image. For such a goal, Encoder-decoder structures are
widely adopted architecture, such as FCNs [6], U-Net [7], and
Deeplab [8]. In these structures, an encoder brings out
important image features, while a decoder brings back the
extracted features localization and generates the segmented
masks. The first high-impact encoder–decoder structure,
Ronneberger et al. [7] U-Net has gained widespread
acceptance among researchers for medical image
segmentation. Long et al.[6] introduced Fully Convolutional
Networks (FCNs), a benchmark for semantic segmentation
tasks, using skip connections, which give a segmentation map
in the output having the same dimension as input data.

Arbitrarily sized images are handled by modifying widely
accepted CNN architectures, such as VGG16 and GoogLeNet.
The authors evaluated their FCN model on three datasets:
PASCAL VOC, NYUDv2, and SIFT Flow, and significantly
improved segmentation performance and achieved impactful
results on these datasets. The work has been widely cited and
has made a significant impact on the field of computer vision.
But this method too has some limitations: computationally
expensive, inefficiently accounting for global context
information, and is difficult to generalize to 3D images.

Motivated by [6], Ronneberger et al. [7] proposed U-net for
microscopy image segmentation. It has two parts, a
contracting path, and a symmetrically expanding path. It has
features such as skip connections, a weighted loss for the
separation of borders between touching objects, and elastic
deformations for data augmentation. It is regarded as one of
the best papers for segmentation in 2015 and was an
advancement to learn successfully from a small number of
annotated images (almost 30). It also won the ISBI Cell
Tracking Challenge 2015 by a significant margin. U-Net has
many modified variants and all of its variants are successfully
implemented for a variety of images and problem areas. Zhou
et al [9] proposed a nested U-Net, Cicek et al [10] introduced a
U-Net design for 3D images and Zhang et al. [1] introduced a
road segmentation method using pure U-Net architecture.

The Attention U-Net [11] was proposed by Oktay et al. in 2018
and includes a unique self-attention gating (AGs) filter and
skip connections. This model’s foundation is a VGG-16 with
AGs/Resnet. This model’s attention mechanism allows it to
concentrate on specific areas of an image, making it very useful
for jobs that need accuracy, like the multi-class abdominal CT-
150 dataset.

3. Methodology

3.1 Dataset Collection

Rudraksha seeds were collected from the market of the
Sankhuwasabha district. Activated carbon of Rudraksha seed
was prepared in the laboratory at different temperatures.
Scanning electron microscopy (SEM) known as The Hitachi
S-4800 FE-SEM, in Japan, captures SEM images at different
scales at a speeding voltage of 10 kV.

Figure 1: Workflow Diagram
.

3.2 Data Preprocessing

Corresponding masks of images were created manually by
using the available open-source tools. The performance of
semantic segmentation algorithms has been substantially
enhanced by image augmentation. Image augmentation
somehow prevents overfitting and enables the model to detect
objects or regions of interest in a variety of instances by
artificially increasing the training dataset using methods like
rotation, scaling, flipping, and cropping. Normalization of
grayscale images is done in order to adjust pixel values to a
constant range, usually between 0 and 1. This ensures
numerical stability, serves to speed up convergence, and
enhances the model’s capacity to extract useful features from
the data during model training.

3.3 U-Net Architecture

The architecture shown in Fig. 2 consists of two parts: one that
is contracting and another that is expansive. The contracting
path is responsible for extracting important features like
vertical edges, horizontal edges, etc. from the images. In the
contracting path, several multiple operations such as
convolution, ReLU, and max pooling are performed. Each
layer of the contracting path in U-net operates on two 3×3
unpadded convolutions, both of which follow ReLU activation,
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Figure 2: U-net architecture
(source: https://arxiv.org/abs/1505.04597)

and finally a 2×2 max pooling operation. The stride of 2 for
max-pooling cut the dimension in half. Calculation of image
dimension after each convolution in U-net:

n − f +1 (1)

n = image dimension, f = filter dimension.
In U-Net say, the input image has dimensions 572×572. After
each convolution with filter 3 × 3, the output image has
dimensions of 572−3+1 = 570, 570−3+1 = 568, and so on.
The max pooling halved the dimension so dimension
568

2 = 284 is input for the next layer. After each max pooling,
the size of the filter becomes double in its contracting path.
2×2 up-convolution results in a doubling of the image size
and a halving of the channel size. For more accurate
localization, skip connections enable the concatenation of
feature maps from matching downsampling layers. After
cropping, the contracting path’s up-convolution and
concatenation are used to calculate the dimension as follows:
(64 × 64 × 512) is cropped from the contracting path to
(56× 56× 512). As a result, (56× 56× 512+ 56× 56× 512) =
(56×56×1024) and can be seen in Fig.2.

Calculation of number of parameters in each layer of U-Net
is expressed as:

• filter dimension, fd.
• depth (total image/s), d.
• no. of filters in the layer, nf.
• no. of bias, nb.
• Number of parameters, np.

np = f d ×n f ×d +nb (2)

Calculation:

1. No. of depth =1, filter dimension = 3×3, 64 filters, and 1
bias = 64 bias for each filter = (3×3)×64+64 = 640.

2. No. of depth = 64, filter dimension = 3×3, 64 filters, and 1
bias = 64 bias for each filter = (3×3)×64×64+64 = 36,928.

3. After max pooling first convolution, No. of depth = 64,
filter dimension =3×3, 128 filters, and 1 bias = 128 bias
for each filter = (3×3)×64×128+128 = 73,856 and so
on.

Softmax and Cross entropy: The softmax function is used to
calculate the energy function in combination with the loss
function known as cross-entropy. It bounds the input to the
range [0; 1].

softmax(xi ) = exp(xi )∑
j exp(x j )

(3)

The loss function or cost function is used to evaluate how well
a specific algorithm performs on the given training data. If the
prediction or generalizing capacity of a model is poor, the loss
is expected to be in large value. Training a model refers to
optimizing the weights of learnable parameters weights by
minimizing the loss. The loss compares the class predictions:
a depth-wise pixel vector against a target vector for each
particular pixel i.e. whether the pixel lies in the region of
interest or background.

3.4 Metrics for Model

(a) Dice Coefficient: A well-liked statistic for measuring image
segmentation algorithms is the Dice Similarity Coefficient
(DSC), referred to as the Dice coefficient. It determines how
much of the anticipated and actual binary maps overlap by
comparing the overlap area to the total number of pixels in
both maps.

Dice = 2|A∩B |
|A|+ |B | (4)

Dice = 2T P

2T P +F P +F N
= F 1 (5)

When testing with binary maps with foreground as the positive
class, the Dice coefficient and F1 score are comparable since
they both achieve an appropriate balance between recall and
accuracy.

(b) Intersection over Union (IoU): Semantic segmentation
algorithms’ efficacy is typically assessed using the Jaccard
Index, also known as IoU (Intersection over Union). It
calculates the percentage of the total area that both segments
cover when the projected segmentation and the actual
segmentation overlap. Using both accurate and incorrect
predictions, IoU provides an assessment of how closely
expected segmentation reflects the actual ground truth. The
average IoU (mIoU) is the IoU across every class.

I oU = J (A,B) = |A∩B |
|A∪B | (6)

Here the ground truth map is B and the predicted
segmentation map is A.

4. Results and Analysis

4.1 Data pre-processing and augmentation

To facilitate computations, the pixel values are normalized in
the 0–1 range. After that, the datasets are center-cropped. The
high-resolution images and masks are cropped to 512×512
pixels. Because this dimension is the normal input image size
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for the architecture, the output must have the same dimension
as the input, which is achieved by padding. Data augmentation
is done using horizontal and vertical flips. Some collection of
datasets after transformation is shown in fig 3.

According to the data in the table 1, the learning rate of
0.00001 seems to be the best among the possibilities. At all
epochs (10, 50, and 150), this learning rate produced the
greatest test dice accuracy. Additionally, the accuracy
increased gradually over time, demonstrating the model’s
ongoing improvement. In contrast, the model performed
extremely poorly when the learning rate was 0.1, with a test
dice accuracy of 0.0 at both epochs 10 and 50. The model
performed rather well with learning rates of 0.001, 0.000001,
and 0.0000001, however, the gain in performance over epochs
was not as steady as with the learning rate of 0.00001.

Figure 3: Augmented dataset (normalized and flip)

Table 1: test dice accuracy at different learning rates and
epochs

learning rate epoch test dice acc.(×100) %

0.1
10 0.0
50 0.0

150 0.21

0.001
10 0.33
50 0.53

150 0.17

0.00001
10 0.61
50 0.62

150 0.64

0.000001
10 0.51
50 0.52

150 0.53

0.0000001
10 0.34
50 0.47

150 0.57

While a learning rate of 0.00001 resulted in the highest test
accuracy, the high validation loss as shown in Fig.4 suggests
that the model may be overfitting to the training data. To
avoid overfitting, several techniques can be proposed,
including early stopping, dropout, weight decay, and data
augmentation [12]. The experiment already uses data
augmentation. Figure 4 shows loss without any dropout and
figure 5 shows a dropout rate of 0.2. However, it’s important to
note that the optimal hyperparameters for regularization
techniques depend on the specific dataset and model
architecture, and it may be necessary to experiment with
different hyperparameters to find the best combination.

Figure 4: Epoch number vs. loss at 0.00001 learning rate
without dropout

Figure 5: Epoch number vs. loss at 0.00001 learning rate with
dropout

When a dropout rate of 0.2 is implemented then figure 5
shows it leads to a smaller gap between the training and
validation loss, more effective at a learning rate of 0.00001. It
suggests that dropout regularization has been effective in
reducing overfitting. This can improve the model’s ability to
generalize to new, unseen data. However, using dropout
regularization can potentially lead to a decrease in the quality
of generated masks, as it may result in a loss of information
and make it more challenging for the model to accurately
generate masks [13].
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Figure 6: Epoch number vs. accuracy at 0.00001 learning rate

Table 2: Performance matrices at different epochs at a
learning rate of 0.00001

For a better understanding of the nature of graph and model
performance, different metrics are taken for performance as
shown in Table 2. The minimum training loss decreased over
the course of the epochs, indicating that the model was
getting better at fitting the training data. The minimum
validation loss also decreased over time, although not as
consistently as the training loss. This suggests that the model
was improving on unseen data as well, but may have
experienced some fluctuations due to random variations in
the validation set or the training process. The maximum
training accuracy and dice score (another metric commonly
used in segmentation tasks) increased over time, which is
expected since these metrics measure how well the model fits
the training data. The maximum validation accuracy and dice
score also increased over time but with more fluctuations than
the training metrics. This suggests that the model was able to
generalize to unseen data to some extent, but may have hit
some plateaus or faced some challenges in improving further.
Finally, the test metrics (loss, accuracy, and dice score) were
evaluated on a test set and generally showed good
performance. The best hyperparameters (i.e., the ones that

achieved the highest validation dice score) were able to
achieve a test dice score of 0.79, which is a decent
performance.

Figure 7: Epoch number vs accuracy at learning rate 0.00001

Figure 8: Predicted mask at Epoch 450 at learning rate 0.00001

It can be seen that the training accuracy is always greater than
the validation accuracy and the nature of training and
validation loss are similar for different batches respectively. In
the Overall scenario, metrics values do not improve drastically
and do not get stabilized on increasing the batch sizes besides
the training speed.

Figure 9: Different metric values vs batch size for training and
validation dataset
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Figure 10: Different metric values vs batch size for test dataset

5. Conclusion

The U-Net architecture consisting of the contracting and
expansive parts is trained with high-resolution SEM images of
activated carbon derived from Rudraksha seeds. The data
augmentation and normalization are done. The tuning of
different hyperparameters such as batch size, learning rate,
epoch number, and dropout rate are performed. The batch
size of four gives slightly better performance metrics (not
significance difference) so it is considered for further analysis.
Among various learning rates, 0.00001 is found to have high
test dice accuracy without a drop rate and with a drop rate of
0.2. Epoch 450 shows a significant improvement in the
training loss compared to earlier epochs, indicating that the
model is fitting the training data better. However, the
validation loss and accuracy do not show much improvement,
suggesting that the model may be overfitting to the training
data. Furthermore, the model achieves the train dice of 0.97 %
best test dice score (0.79) at this epoch. The result reflects that
even though the accuracy is low as compared to the accuracy
of the original paper [7] which is almost 95%, the evaluated
model can produce a segmented mask.
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