
Proceedings of 13th IOE Graduate Conference
Peer Reviewed

ISSN: 2350-8914 (Online), 2350-8906 (Print)
Year: 2023 Month: April Volume: 13

Performance Enhancement of Support Vector Machine Using
Autoencoder For Network Intrusion Detection System

Raushan Kumar Pandit a, Sharad Kumar Ghimire b

a, b Department of Electronics & Computer Engineering, Pulchowk Campus, IOE, TU, Nepal
 a 076msdsa013.raushan@pcampus.edu.np, b skghimire@ioe.edu.np

Abstract
Network Intrusion Detection System (NIDS) is a promising area of research topic in the field of Cyber Security. Behavioral-based
NIDS also called anomaly-based intrusion detection system provides a more effective solution to Network Security than conventional
or signature-based intrusion detection systems such as Firewalls and Anti-viruses. NIDS can be designed by adopting any classifier
algorithm which can analyze network traffic as normal or abnormal (attacks). But the performance of good NIDS depends heavily
on the selection of the best classifier algorithm for a given dataset, improvement strategies used to increase the accuracy of the
classifier, and decreasing the training & testing time of the algorithm. In this paper, we propose an unsupervised learning approach
for feature learning and dimensionality reduction without loss of information and a multi-class support vector machine algorithm for
classifying attacks. The purpose to apply unsupervised feature learning (UFL) is to reduce training and testing time considerably
and it improves the prediction accuracy of Support Vector Machine (SVM). The proposed model has been built by using Sparse
Autoencoder and SVM Classifier. Feature learning is done by the Sparse Autoencoder algorithm and it reconstructs a new feature
representation with minimal loss. Once pretraining has been done the new feature is input into the SVM algorithm to enhance its
capacity to identify intrusion and classification precision. The result shows the performance of SVM improved & accelerated by the
use of the Sparse autoencoder.

Keywords
Support Vector Machine (SVM), Sparse-Autoencoder (SAE), CIC-IDS2017 Dataset, Kullback-Leibler (KL) Divergence,
Hyperparameter Tunning, STL(Self Taught Learning), Unsupervised Feature Training (UFL)

1. Introduction

Anomaly-based NIDS is defined as a classifier model which can
take network traffic data as input, analyze those data, and based
on the hypothesis that abnormal traffic (attacks) pattern is
different from the normal traffic pattern detects attacks from
traffic data. The idea of the Intrusion detection system was first
proposed by James P. Andersion in 1980. Since then, many
matured model has been designed with machine learning
algorithms such as J48, Random Forest, Nave Bayesian,
NB-Tree, SVM, ensemble method, and deep learning algorithms
such as Autoencoder, CNN, LSTM which are capable to satisfy
the need of network security. However, these model still faces
challenges in improving detection accuracy, reducing the time
complexity of algorithms, and the algorithm’s capability to
detect new types of novel attacks. Also, during the last two
decades network size and its nodes as well as data volume
handled by network nodes increased significantly. Due to this
also day by day vulnerability to network nodes and mutated
forms of old attacks as well as new novel attacks increasing
considerably.

In this paper, we have described our NIDS model which used
Sparse Autoencoder based on STL (Self Taught Learning)
framework for effective feature representation as well as
dimensionality reduction, in combination with a shallow
machine learning algorithm SVM. We have tried a genuine
approach to address some serious challenges faced by NIDS
such as Detection Accuracy, Class imbalance problems, and
high training and testing time of Machine learning algorithms.

We have compared the performance of SVM alone with SVM
backed by the Sparse Autoencoder model with the help of the
CIC-IDS2017 evaluation dataset. Models have been evaluated
on performance metrics parameter like Accuracy, Precision, and
Recall.

2. Related Works

Arnaud Rosay et al. explain the noises, and drawbacks of
CIC-IDS2017 dataset, and suggest methods to clean and process
that dataset so that this could be meaningful to feed into the
proposed model to design NIDS [1]. The proposed algorithms
such as RNN, CNN, and BLSTM described by Yin et al. and
Isra Al-Turaiki et al. in [2, 3] respectively have given potential
approaches to building NIDS with fantastic accuracy of the
model with low false alarm rate than traditional algorithms like
HNB(Hidden Naive Bayes), Decision Tree as described in
paper [4] and [5] respectively.

Sumaiya Thaseen et al. demonstrate dimensionality reduction
by Chi-Square feature extraction and using multi SVM delivered
good detection accuracy of the model [6]. The model proposed
in this paper struggles to detect U2R attacks on NSL-KDD
dataset. For new attacks training of the model will be difficult.
Imene Zenbout et al. and Kemker et al. describe the
classification of cancer & hyperspectral images based on a
Self-taught learning framework using Stacked Sparse &
Convolutional autoencoder in [7] and [8] but taken into
consideration to understand different criteria for use of
autoencoders. Utilizing Deep Learning Techniques for Effective

Pages: 145 – 151

Performance Enhancement of Support Vector Machine Using Autoencoder For Network Intrusion Detection System

Zero-Day Attack Detection by Hindy et al. in [9] might be one
of the latest papers which evaluates their model performance on
NSL-KDD as well as CIC-IDS2017 dataset. The approach
applied in this paper is One-Class SVM and Deep Autoencoder.
Did not talk about the training & testing time of the model.

This paper is based on paper [10] by Al-Qatf et al., which focuses
on training and testing time as well as the accuracy of the Model.
Also, it has implemented the proposed methodology based on
the Self-taught learning (STL) framework. The dataset used in
this NSL-KDD benchmark. The performance of the proposed
model received high by tuning hyper-parameter terms like p,
λ ,β came in sparse autoencoder loss function & SVM kernel
function. Also, the model was trained & tested with 10-cross
validation with best values up to 1000 epochs. After studying the
paper, still there is room to play with these tuning parameters,
validation & epochs to find the best result with the CIC-IDS2017
benchmark dataset.

3. Methodology

3.1 Evaluation Dataset Description

The CIC-IDS2017 dataset is provided by the Canadian Institute
of Cybersecurity publicly for researchers[11]. According to
paper [11], the data was recorded by CICFlowMeter(formally
ISCX FlowMeter) for 5 days, inside their local lab infrastructure
is divided into two classes one contains 4 machines launching
attacks toward the second class containing 10 victim machines.

The network traffic is also labeled into 15 classes. Among them,
there are 14 types of attacks along with one Benign (Normal)
traffic. There is a total of 2,830,743 instances with 78 Features.

In this research work, for a classification task support vector
machine algorithm has been used. Even after employing Sparse
Autoencoder (Deep Learning Approach) for unsupervised feature
learning but still, at last, a support vector machine has been used
for classification tasks. With the help of Numpy & Pandas library
redundant records & constant values features have been removed.
Also, Infinity values and NaN values have been taken care of
critically.

3.1.1 Small Dataset (CIC-IDS2017)

Due to time complexity & resource limitations, SVM time
computation increases with the increase in data size. For the
whole dataset, it’s almost impossible to train the model with
efficient timing. This is the reason, a small dataset has been
made from the original one. Small set data has been made by
taking records randomly. There are no specific rules but out of a
total of fifteen classes, only four classes (”Normal Traffic”,
”DosHulk”, ”Port Scan” and ”DDoS”) are reduced randomly
because these classes have a count of instances more than one
hundred twenty-five thousand at least. Remaining all instances
from the original whole data set for the remaining eleven classes
have been taken in the small data set because these are minority
classes of attacks that are much crucial for our Model and
strictly can’t be ignored.

The small data set contains 354603 instances with 31 features
after dropping highly correlated features (above 90 %) & Chi-
square feature selection [9] & [6]. More details about the number

of instances with types of attack are shown in Table 1. As
explained above only four classes of traffic have been reduced
randomly.

Table 1: Small Dataset Instance Count(CIC-IDS2017)

3.1.2 SMOTE applied Small Dataset (CIC-IDS2017)

Imbalanced classification involves developing predictive models
on classification datasets that have a severe class imbalance.
Here, the condition arises to deal with a Severe Class imbalance
problem. Because there are some attacks like “Heartbleed”,
“SQL Injection”, “Infiltration”, ”Web attack Brute Force”, and
“Web attack XSS” which fall under a high minority class.

Oversampling minority classes is one strategy to solve the issue
of class imbalance. The Synthetic Minority Oversampling
Method, or SMOTE for short, is a particular approach for the
minority class. By oversampling minority groups, SMOTE will
aid in the creation of new synthetic data. If SMOTE applied for
minority classes and an under-sample for the majority class, the
model would perform better.

Actually, to some extent, hyper-parameter tunning has been
done in SVM as well as in SAE-SVM Model to tackle the class
imbalance problem to get better results even with the
unbalanced dataset. But still, some attacks are undetected by
models so SMOTE has been applied strategically in such a way
only to those undetected classes. The dataset with instances
counts achieved after applying SMOTE to a small data set
(Table 1) is shown in Table 2.

3.2 Proposed Model

3.2.1 Problem Formulation & Overview

As seen in the figure 1, after feature selection the processed
labeled data set is divided into training and test set. For the
explanation purpose, suppose the training labeled dataset
contains m records which are represented by (Xm

l ,Y m).

where, Xm
l ,Y m = {(x1

l ,y
1),(x2

l ,y
2),,(xm

l ,y
m)},

input feature vector X i
l εRn (The subscript ”l” indicates that it is

146

Proceedings of 13th IOE Graduate Conference

Table 2: Small Dataset Instance Count,after SMOTE
applied(CIC-IDS2017)

labeled record) and yiε {1,2,3,... C} are corresponding labels for
multi-class classification (The ”i” subscript denotes the range of
the record i.e. 1 to m).

If we remove the corresponding label for input xi
l from the

training dataset, the remaining record will be called an
unlabeled training set which is denoted by,

X i
u = (x1

u,x
2
u,,x

m
u)εRn

To get better representation & low dimensionality of input
x1

l ,x
2
l ,,x

m
l εRn, we can’t initialize weighted parameter wi jl

(Subscripts & Superscript meaning will be given into Sparse
Autoencoder section) equal to zero. Otherwise, all hidden nodes
of the Sparse Autoencoder will compute exactly the same
functions of the input. In order to serve symmetry breaking, we
fed unlabeled training samples x1

u,x
2
u,,x

m
u εRn to the Sparse

Autoencoder algorithm (the first step in Figure 4). After learning
parameters W & b1 (Bias parameter) by Sparse Autoencoder
due to previously fed unlabeled sample, now we feed
x1

l ,x
2
l ,,x

m
l (both training as well as the test set at the second

step in Figure 3) to Sparse Autoencoder which tries to
reconstruct and learn its output values (x̂1

l , x̂
2
l ,, x̂

m
l) to be

equal to its input (x1
l ,X

2
l , ...,x

m
l).

In this process from the hidden layer, we can get the
low-dimensional representation that is
{(a1

l ,y1),(a2
l ,y

2),,(am
l ,y

m)} where original input data is
replaced with activation function a. Thus, we will have new
training set of data (ai

l ,y
i). We train our SVM model with this

low-dimensional data. Exactly like the training set, we follow
the same process through Sparse Autoencoder for initial test
data & we will get low-dimensional atest . This atest will be used
to evaluate the SVM model.

3.2.2 Sparse AutoEncoder

An Autoencoder neural network is an unsupervised feature
learning algorithm that applies Stochastic gradient descent

Figure 1: NIDS Model combing Sparse Autoencoder with SVM
[10]

which is implemented by a backpropagation algorithm. An
autoencoder tries to learn a function Zw,b(x)≈ x̂. That means, it
trying to learn an approximation to the identity function, so as to
output x̂ that is similar to x. The Sigmoid identity activation
functions 1

1+e−z for range [0, 1] has been used for SAE (Sparse
Autoencoder). For explanation purposes, let’s suppose there are

Figure 2: Sparse Autoencoder

an ’N’ number of units in Layer 1 and the Output Layer of
Autoencoder. Also, ’k’ is the number of units in a hidden layer
of Autoencoder. The weight & bias associated with input are
expressed as

wl
i j which is the Weight for connection between unit j in layer ’l’

and the unit i in layer ’l+1’,
bl

i which is the bias for unit i in layer ’l+1’ and

147

Performance Enhancement of Support Vector Machine Using Autoencoder For Network Intrusion Detection System

al
i which is activation for unit i in layer ’l’.

The generalized equation for the hidden layer (activation
function) and output layer is written as

a = f (X l
i) = g(wx+b1) (1)

Z = f (al
i) = g(Va+b2) (2)

As shown in the above figure, the equation for low-dimensional
(compressed) output from the hidden layer could be written as
a2

1 = f (w1
11x1 +w1

12x2 + ...+w1
1 jxi +b1

1)

a2
2 = f (w1

21x1 +w1
22x2 + ...+w1

2 jxi +b1
2)

a2
k = f (w1

i1x1 +w1
i2x2 + ...+w1

ikxi +b1
k)

The weighted parameter (W, V), and bias parameter b in equation
1 and 2 updated like
wl

i j = wl
i j−α

∂J(w,b)
∂wi jl

and

bl
i = bl

i−α
∂J(W,b)

∂wl
i j

.

Where,J(w,b) =
1
2
∥Zw,b(xi)− x̂i∥2 +

λ

2 ∑
l

∑
i

∑
j
(wl

i j)
2 (3)

The equation 3 is the cost function of Autoencoder. In equation 3,
the first term is squared-error which tries to minimize stochastic
gradient descent and the second term is the regularization term,
often referred to as a weight decay term. It tends to reduce the
weight size and aids in preventing over-fitting. The weight decay
parameter is λ controls the relative importance of the two terms.
In Autoencoder, if hidden units are less than input or output units
then input information is forced to compress at the hidden layer.
But even when the number of hidden units is large or even equal
to input units then still we can discover interesting structures,
by imposing another constraint on the Network. If we impose a
”Sparsity” constraint on the hidden units, then the Autoencoder
will still discover interesting structures in the data, even if the
number of hidden units is large. Let’s think the neuron is active
if its output value is close to 1 and is ”inactive” if its output
value is close to 0. We would like to constrain the neurons to
be inactive most of the time. This can be done by adding the
Sparsity Penalty term which is Kullback-Leibler divergence.

KL(p∥ p̂ j) = p log
p
p j

+(1− p) log
1− p
1− p j

(4)

Where ’p’ is the Sparsity constraint parameter whose value is 0
to 1 & β is the Penalty term which controls the weight of the
sparsity penalty term. The penalty term equation 4 has zero value
when p = p j, which means activation must be near 0. And it
increases monotonically as p j diverges from p.

Now, the overall cost function for Sparse Autoencoder will be
written as

Js parse(w,b) = J(w,b)+β

k

∑
j=1

KL(p∥p j) (5)

In equation 5, the terms λ , p, and β are considered for
hyperparameter tunning to reduce the overall cost function of
the sparse autoencoder. Ultimately these parameters help the
algorithm to learn input features much more effectively.

3.2.3 SVM(Support Vector Machine)

Based on statistical learning theory (STL), the SVM is a
supervised machine learning technique that creates a hyperplane
to separate a class of positive examples from a class of negative
instances using structural risk reduction criteria. It is one of the
popular ML techniques for modeling classification as well as
regression problems due to its good accuracy and performance.
It splits data points with hyperplanes. The main aim to
maximize the distance between support vectors separating all
classes is necessary. The points that lie on the marginal plane
line are called support vectors. The goal is to maximize margin
by adjusting the cost function of SVM to get good performance
of the model. It uses kernel functions such as Radial Basic
Function (RBF), linear, Sigmoid, and polynomial. The RBF
kernel has been used for the proposed model, which is also
called the Gaussian kernel that tries to make the hyperplane in
N-dimensional space that distinctly classifies the data points.
Also, RBF comes with artificial parameters C & γ as shown in
equation 6 & 3 so that parameter tuning can be done easily to
select the best parameters which can give fine accuracy &
prediction from the model. The equation for RBF Kernel can be
defined as

K(xi,x j) = exp(−γ||xi− x j||2) (6)

Where ||xi−x j||2 is the squared Euclidean distance between two
features and γ can be further defined by γ = 1

2σ2 . The σ2 is the
variance associated with each attribute in the validation data set.

The objective function of SVM can be defined as

min||w||2 +C∑ξ (7)

where ”w” is the margin of hyperplanes, ξ is the error rate due to
slack variables, and ”C” is the Overfitting constant. If ”C” is very
large, the optimization algorithm reduces ||w|| which leads to
generalization loss. Also, if ”C” is small, it gives a large training
error. So it is crucial to find the optimal value of ”C”.

In a nutshell, by taking low-dimensional & the best features
learned training dataset from Sparse Autoencoder by tuning
these parameters of equation 5, feeding them into SVM where
again tuning done to SVM parameters(RBF kernel) and getting
enhanced prediction & accurate results from STL-framework
based model (SAE-SVM). The ”GridSearchCV” is an automatic
model selection tool from the Sklearn Library of Python. It
facilitates fitting SVM model at best γ & ”C” values from the list
of different γ & ”C” values supplied artificially for RBF Kernel.
Results and parameter tuning are described in detail in the Result
Section.

3.2.4 Algorithm of Proposed Methodology

3.3 Experiment Environment

Table 3: Environment Specifications

SN Google Colab Pro Specifications
1 CPU Xeon(R) Single Core
2 GPU NVIDIA Tesla T4
3 GPU Storage 15 GB
4 CPU Storage 12.7 GB
5 DISK Storage 80 GB

148

Proceedings of 13th IOE Graduate Conference

Algorithm 1 Algorithm for SAE Training
Input:Step1-Unlabled Training Dataset, Step2- Training + Test dataset (all), Sparse
autoencoder architecture, optimizer & parameters (’SGD’, batch-size & no. of epochs), and
regularization parameters)
Output: Trained Sparse Autoencoder & low dimensional datasets

1. Sparse Autoencoder← build autoencoder (ANN Architecture, Kullback-Leibler
”p” value and regularizer parameters)

2. Optimizer ← SGD-minibatch (Stochastic Gradient Descent) batch-size=256,
epochs=500
← SGD-minibatch (Stochastic Gradient Descent) batch-size=256, epochs=256

3. Step 1: Training with an unlabeled training data set to set weight & bias parameters

4. Step 2: Training with all data (Training + Test set)

5. return sparse autoencoder model & save the trained model

6. Generate low dimensional data {(a1
l ,y1),(a2

l ,y
2),,(am

l ,y
m)} (Sigmoid activation

function applied to input data)

7. Save data for classification purposes by SVM

The specifications of the environment while doing
experimentation have been tabulated in table 3. In order to
implement code for Sparse Autoencoder we have used the
TensorFlow Keras model. Also, the SciKit-learn library is taken
into consideration while building the SVM model.

4. Result & Discussion

The performance of all the models (SVM and STL-SAE-SVM)
has been depicted in this section. The comparison has been made
with results for the given dataset & model. The performance
metrics like Precision, Recall, Training time, and Testing time
have been shown in the bar diagram or tabulated form to evaluate
each model.

4.1 Performance of SVM Based NIDS

4.1.1 Precision & Recall Metrics for Small Dataset (Table 1)

The small dataset (Table 1) has been split into an 80:20 ratio.
Eighty percent of instances were taken as training of the SVM
model. The rest instances were for predicting the model.

Figure 3: Precision & Recall at ’C’=100,’gamma’=1 for SVM
model only

Table 4: Parameters, Train & Test Time for SVM

Parameters
Training

Time
Testing
Time

C=0.1,1,10,102,103

γ=1,0.1,10−2,10−3,10−4
8 Hour,

33 minutes 6 minutes
Best ={’C’=100,γ=1 }

After the training, testing, and prediction, the overall accuracy
of the SVM model only is found 99%. Precision & Recall result
for each class (attack) has been shown in Figure 3 in bar graph
form at best parameters for RBF kernel. The time taken by the
model and parameters used for the model is tabulated in Table 4.

For the evaluation of NIDS ”Recall” would be the best
parameter. The SVM model only is performing worst when it
comes to detecting or classifying attacks like ”Heartbleed”,
”Infiltration”, ”Web Attack SQL Injection”, and, ”Web Attack
Cross-site scripting ” because, in Figure 3, the recall values have
been 32 %, 42 %, 0.02 %, and, 2 % respectively. It has been
performing better for the rest of the attacks or classes.

4.1.2 Precision & Recall Metrics for SMOTE applied small
dataset (Table 2)

Figure 4: Precision & Recall at ’C’=100,’gamma’=1 for SVM
model only

After the training, testing, and prediction, the overall accuracy of
the SVM model only is found 98%.

In Bar Diagram (Figure 4), the recall values for ”Heartbleed”,
”Infiltration”, ”Web Attack SQL Injection”, and ”Web Attack
Cross-site scripting ” have been found 100 %, 99 %, 83 %, and,
80 % respectively. These are improved due to applying SMOTE
in comparison to Subsection 4.1.1. These are quite a descent
values for extreme minority class of attacks. For the rest of the
majority class of attack it has been above 97 %.

4.2 Perfomance of STL-SAE-SVM based NIDS

4.2.1 Precision & Recall Metrics for Small Dataset (Table 2)

The table 6 shows a list of parameters we have chosen for training
unlabeled as well as labeled data with SAE.

149

Performance Enhancement of Support Vector Machine Using Autoencoder For Network Intrusion Detection System

Table 5: Parameters, Train & Test Time for SVM

Parameters
Training

Time
Testing
Time

C=0.1,1,10,102,103

γ=1,0.1,10−2,10−3,10−4
8 Hour,

45 minutes 5 minutes
Best={’C’=100,γ=1 }

Table 6: Parameters for Sparse Autoencoder

Parameters (λ ,p, β) Values Best Values

’p’
0.01,0.02,
0.03,0.05 0.01

β 1,2,3,4 3

λ

10−3,10−4,

10−5,10−6 0.000001

Table 7: Total Train & Test time of STL-SVM Model at best
parameters for SAE and SVM

Best Values TrainTime TestTime Epoch
λ = 0.000001,
β=3, p=0.01,

C=100,
γ=1

29 min (X i
u)

21min(X i
l)

49min(SVM) 4 min

512
256
NA

Total 1 Hr 52 min 4 min

Figure 5: Precision & Recall of STL-SAE-SVM model at best
parameters described in Table 7

We can train our STL-SVM model with more instances than
SVM alone model but for comparison purposes, we have taken
the same instances of a dataset (which was used for the SVM
Model, Table 2). For the experimentation, as explained in
Section 3.2.1 we have trained Sparse Autoencoder with
unlabeled data first up to 512 epochs and with labeled data up to
256 epochs. Time consumed by SAE-SVM (Sparse
autoencoder-Support Vector Machine) in training & testing as
mentioned in table 7. If we compare SVM model only (Table 5)
with the STL-based-SAE-SVM model (Table 7) then we can
conclude applying the Self-taught learning-based (STL)
unsupervised learning approach(Sparse autoencoder) to SVM
model significantly reduced training time of model for NIDS.

Also, the overall accuracy of the STL-based-SAE-SVM model
is 99%. So, in terms of Accuracy, it has improved a bit than
SVM model only for SMOTE applied small dataset.

As in Figure 6, the training loss occurred due to the training
dataset by sparse autoencoder being about to converge with the
validation loss curve with a very minimal gap. Mini-batch SGD
(Stochastic gradient descent) as an optimizer has been used for
sparse autoencoder. There are 30 nodes in the input, hidden &
output layers of the sparse autoencoder.

Figure 6: Training & Validation loss graph of SAE

5. Conclusion

For learning low-dimensional features from unprocessed data,
single-layer sparse autoencoding is more effective.
Automatically obtaining effective and suitable low-dimensional
characteristics for the classification was made simple by SAE.
Due to this SAE has drawn huge attention to its study in recent
years. As seen in 4.2 section, the detection accuracy of SVM
and training time of SVM enhanced due to the Feature learning
approach backed by Sparse Autoencoder.

6. Future Enhancements

The proposed model shows decent results in terms of enhanced
prediction accuracy as well as reduced training & testing time.
Scikit-learn SVM is slow and it is unable to use a GPU
accelerator. Thundersvm is an open-source library that leverages
GPU and multi-core CPUs in applying SVM to solve problems
in a much faster way with high efficiency. Thundersvm could
enhance the efficiency of the model to some extent. Also, NIDS
could be built using an Autoencoder alone on the basis of
reconstruction loss comparison.

References

[1] Arnaud Rosay, Eloı̈se Cheval, Florent Carlier, and Pascal Leroux.
Network intrusion detection: A comprehensive analysis of cic-
ids2017. 2022.

[2] Chuanlong Yin, Yuefei Zhu, Jinlong Fei, and Xinzheng He. A
deep learning approach for intrusion detection using recurrent
neural networks. IEEE Access, 5:21954–21961, 2017.

150

Proceedings of 13th IOE Graduate Conference

[3] Isra Al-Turaiki, Najwa Altwaijry, Abeer Agil, Haya Aljodhi,
Sara Alharbi, and Lina Alqassem. Anomaly-based network
intrusion detection using bidirectional long short-term memory
and convolutional neural network. The ISC International Journal
of Information Security, 2020.

[4] Levent Koc, Thomas A. Mazzuchi, and Shahram Sarkani. A
network intrusion detection system based on a hidden naı̈ve bayes
multiclass classifier. ELSEVIER, 2021.

[5] Shih-Wei Lin, Kuo-Ching Ying, Chou-Yuan Lee, and Zne-Jung
Lee. An intelligent algorithm with feature selection and decision
rules applied to anomaly intrusion detection. Applied Soft
Computing, 12(10):3285–3290, 2012.

[6] Ikram Sumaiya Thaseen and Cherukuri Aswani Kumar. Intrusion
detection model using fusion of chi-square selection and multi-
class svm. Journal of King Saud University-Computer and
Infromation Sciences, 2017.

[7] Imene Zenbout, Abdelkrim Bouramoul, and Souham Meshoul.
Stacked sparse autoencoder for unsupervised features learning in

pancancer mirna cancer classification. 2020.

[8] Ronald Kemker and Christopher Kanan. Self-taught feature
learning for hyperspectral image classification. IEEE Transactions
on Geoscience and Remote Sensing, 55(5):2693–2705, 2017.

[9] Hanan Hindy, Robert Atkinson, Christos Tachtatzis, Jean-Noël
Colin, Ethan Bayne, and Xavier Bellekens. Utilising deep learning
techniques for effective zero-day attack detection. Electronics,
9(10):1684, Oct 2020.

[10] Majjed Al-Qatf, Yu Lasheng, Mohammed Al-Habib, and Kamal
Al-Sabahi. Deep learning approach combining sparse autoencoder
with svm for network intrusion detection. IEEE Access, 6:52843–
52856, 2018.

[11] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani.
Toward generating a new intrusion detection dataset and
intrusion traffic characterization. In International Conference
on Information Systems Security and Privacy, 2018.

151

	Introduction
	Related Works
	Methodology
	Evaluation Dataset Description
	Small Dataset (CIC-IDS2017)
	SMOTE applied Small Dataset (CIC-IDS2017)

	Proposed Model
	Problem Formulation & Overview
	Sparse AutoEncoder
	SVM(Support Vector Machine)
	Algorithm of Proposed Methodology

	Experiment Environment

	Result & Discussion
	Performance of SVM Based NIDS
	Precision & Recall Metrics for Small Dataset (Table 1)
	Precision & Recall Metrics for SMOTE applied small dataset (Table 2)

	Perfomance of STL-SAE-SVM based NIDS
	Precision & Recall Metrics for Small Dataset (Table 2)

	Conclusion
	Future Enhancements
	References

