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Abstract
Gastrointestinal diseases, which affect the gastrointestinal tract, are a common health-related problem. The common procedure for
their diagnosis is endoscopy, which results in endoscopic images. Although sharing these images is beneficial, there are difficulties
in their storage and transmission. Dataset condensation has recently grown in favor as a data-efficient learning technique for
reducing large datasets into concise useful samples for deep neural network training which also retains the performance of the
original dataset. Therefore, a dataset containing endoscopic images of the gastrointestinal tract is condensed to obtain a smaller
synthetic dataset. The gastrointestinal tract disorders were classified using a convolutional neural network and the distribution
matching method is used to condense the images in three settings of 1, 5 and 10 images per class. The classification performance
of the original dataset and the condensed dataset is also compared and analyzed.
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1. Introduction

There has been significant advances in medical technology,
particularly in the field of Computer Aided Diagnosis (CAD)
that utilizes machine learning techniques to help physicians with
disease diagnosis. Deep learning techniques have shown
significant results in exploiting large-scale medical data, but the
requirement for large datasets with millions of samples poses
challenges in terms of storage and computational complexity [1].
Small medical facilities may not have enough data for training
deep convolutional neural networks (DCNN), thus cross-flow of
data among medical facilities is necessary. However, sharing
sensitive medical data raises privacy concerns, and there are also
huge storage and transmission costs to consider.

The reduction of large datasets has been attempted using various
methods such as instance selection, core-set construction, and
dataset pruning [2]. Recently, dataset distillation, also referred
to as dataset condensation, has gained popularity. This involves
creating a smaller dataset from a larger one, which differs from
previous methods in that the distilled dataset gathers knowledge
from the entire original dataset, resulting in comparable
performance to the larger dataset. This technique is seen as a
solution to the challenges posed by the storage and transmission
costs of large medical datasets. Synthesized data can be utilized
for model training while maintaining privacy and preventing
retrieval through MIA (Membership Inference Attack) or visual
comparison analysis [3].

Gastrointestinal (GI) tract disease is a common health problem
caused by a combination of lifestyle, genetics, and
environmental factors. According to research from Cancer
Statistics, the United States had the highest occurrence of
stomach cancer in 2018 [4]. In Nepal, a large number of people
suffer from GI diseases[5]. Endoscopy is the standard diagnostic
method for GI disease, providing gastroenterologists with
important endoscopic images and videos to make accurate
diagnoses and determine the appropriate course of treatment. It

is crucial to diagnose stomach cancer early as it is one of the
main causes of cancer-related deaths globally. However,
collecting a large number of gastrointestinal images can be
challenging for small medical facilities.

The condensation of a dataset of GI endoscopic images has been
performed, resulting in a condensed dataset that can be used
for further computer-aided diagnosis. In a subsequent step, this
condensed dataset is used to classify various GI diseases using
CNN. Additionally, a comparison of its performance with the
original, larger dataset has been conducted.

2. Related Works

2.1 Dataset Condensation

The current state of the art machine learning models require
large datasets with millions of samples, which can be difficult to
store, pre-process, and train on. To address these constraints, a
recent approach called training set synthesis has emerged,
aiming to generate a small synthetic dataset that can be used to
train deep neural networks for specific tasks. This approach was
introduced in the Dataset Distillation (DD) [2], which utilizes
gradient optimization to construct synthetic images from a set of
original training images that are most helpful for empirical risk
minimization with respect to model parameters. However, a
major drawback of this approach is the time-consuming
optimization process which includes unrolling the recursive
computation graph and changing network weights for
subsequent steps for each outer iteration.

Further, Dataset Condensation with Gradient Matching (DC) [6]
introduces a new technique for dataset condensation that creates
synthetic input samples by comparing model gradients with those
from the original input samples. This method avoids the time-
consuming unrolling of the computational graph by considering
the gradients of the real and artificial training losses with respect
to the model parameters.
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Based on this work, Differentiable Siamese
Augmentation(DSA)[7] was proposed, which uses data
augmentation to create more informative synthetic images and
improve performance in training neural networks. The resulting
synthetic training set can be used with data augmentation to
outperform state-of-the-art methods.

Another technique to improve efficiency is Dataset
Meta-Learning from Kernel Ridge-Regression (KRR) [8]. This
method condenses datasets by approximating neural networks
with kernel ridge regression, using a novel algorithm called
Kernel Inducing Point (KIP). KIP is a meta-learning algorithm
that is based on recent findings linking infinitely wide neural
networks to KRR, which have been successful in generating
high-quality datasets. KIP has been shown to compress datasets
by one or two orders of magnitude for KRR tasks,
outperforming previous methods of dataset distillation.

Unlike DC and DSA, Dataset Condensation with Distribution
Matching (DM) [9] learns condensed datasets by directly
comparing the output characteristics of actual and synthetic
samples. In a large number of sampled embedding spaces,
Dataset Condensation with Distribution Matching presents a
straightforward yet efficient approach for creating condensed
images by matching the feature distributions of synthetic and
real training images. This method avoids costly bi-level
optimization by framing the task as a distribution matching
problem with the maximum mean discrepancy (MMD).

2.1.1 Dataset Condensation on Medical Dataset

A gradient descent-based soft-label anonymous gastric X-ray
image distillation technique achieves great classification
performance by condensing each class into a single image for
training [10]. This work has been further extended where the
whole dataset of stomach X-ray images are compressed into a
single anonymous soft-label patch image for maximum
compression rate [11]. The COVID-19 chest X-ray image
dataset condensation demonstrates that DC may achieve great
detection performance even with a limited number of
anonymized chest X-ray images [12]. Here, the student
network’s training parameters match those of the teacher
network trained on the original dataset. Another technique [13]
does a more efficient distillation of the COVID-19 chest X-ray
images and enhances distillation performance by pruning
difficult-to-match parameters.

The majority of the aforementioned techniques have only been
tested on small datasets such as CIFAR, MNIST, and X-ray
images, which have mostly been used in medical image
condensation. Therefore, dataset condensation with distribution
matching on labeled images of HyperKvasir[14] is performed
here in light of the inefficiencies related to sharing large medical
datasets. DM [9] showed how several classes of synthetic data
can be learned independently and concurrently. Additionally, it
demonstrated its effectiveness on TinyImageNet, a more difficult
dataset. Hence, dataset condensation with distribution matching
is proposed for a complex GI endoscopy image dataset.

3. Proposed Methodology

Figure 1 shows the system block diagram. The first step is the

data collection, here the HyperKvasir[5] dataset which is the
collection of the GI tract endoscopic images will be used. Major
tasks include synthesizing condensed images and using them to
train classifiers. Models trained on the original dataset and the
condensed dataset are then compared and evaluated.

Figure 1: System block diagram

3.1 Preprocessing

The images for gastrointestinal endoscopy included in the
dataset range in size from 720x576 to 1920x1072. The size of
all images was reduced to 416X416 and the metadata was also
removed beforehand because the size of the images may also
affect training time. Images were once again resized to 128X128
due to computational complexity, memory limitations, and to
enable more effective processing. Then, dataset is normalised
which involves transforming the images so that their mean and
standard deviation become 0 and 1 respectively. This also helps
to optimize the training process and improve the accuracy of the
neural network.

3.2 Data Augmentation

As there is significant imbalance in the data which can be seen
in figure 4, the result could be the biased models which perform
poorly for the minority class. So, oversampling of the minority
classes is done. This involves adding more samples of the
minority class to balance the class distribution. So, it can be
effective in increasing the representation of the minority class in
the model. So common augmentation techniques like random
transformations is applied. This involves randomly transforming
the existing samples in the minority class, such as flipping,
rotating, scaling, and adding noise, to generate new samples.

3.3 Synthesizing condensed dataset

The process starts with synthesizing a condensed dataset from
the original dataset, which consists of GI endoscopy images.
The algorithm utilizes distribution matching to match the
original dataset and synthetic dataset, where the distance
between the original and condensed images in a
lower-dimensional embedding space is estimated using the
maximum mean discrepancy. The goal is to minimize the
difference between the actual and synthetic images belonging to
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the same class since this is an image classification task. Here,
the large dataset is given as

T =
{
(x1,y1) , . . . ,

(
x|T |,y|T |

)}
(1)

with |T | images and label pairs. Dataset Condensation
condenses this to the small synthetic set

S =
{
(x1,y1) , . . . ,

(
x|S|,y|S|

)}
(2)

with |S| synthetic/condensed image and label pairs. Then the
model trained on each T and S obtain the comparable
performance on unseen testing data. Since training images are
often high-dimensional, it can be both expensive and imprecise
to estimate the true data distribution PD. Instead, in distribution
matching [9], it is assumed that each training image x ∈ Rd is
embedded into a lower-dimensional space using a set of
parametric functions, denoted as ψv : Rd → Rd′ . Each
embedding function ψ provides a partial interpretation of the
input, and their combination gives a full interpretation. The
Maximum Mean Discrepancy (MMD) [15] is used to estimate
the separation between the real and synthetic data distributions.
Since ground-truth data distributions are not available to us, the
empirical estimate of the MMD:

Eϑ∼Pϑ

∥∥∥∥∥ 1
|T |

|T |

∑
i=1

ψϑ ((xi)) -
1
|S|

|§|

∑
j=1

ψϑ ((s j))

∥∥∥∥∥
2

(3)

In each iteration, a random mini-batch of the training data is used
to calculate the error gradient and update the model parameters.
The initialization of the synthetic images is done using either
random real training images or Gaussian noise.

The Differential Siamese Augmentation (DSA) [7] is also applied
to both real and synthetic batches, so that the resulting condensed
dataset can effectively handle augmented images, leading to
better performance. Common augmentation strategies include
cropping, flipping, color jittering, and rotations, among others is
used.

The figure 2 illustrates the steps involved in generating a
condensed dataset using distribution matching. The training
algorithm involves splitting the training data into smaller
mini-batches to efficiently compute the model parameters in
each iteration. In each iteration, a random mini-batch is used to
calculate the error gradient and update the model parameters.
The model is sampled with parameter v in each iteration, and the
network parameters are sampled to reduce complexity and
improve training efficiency. For each class, pairs of real and
synthetic data batches and augmentation parameters are taken,
and the mean discrepancy between the augmented batches is
calculated to determine the loss function. Stochastic gradient
descent is then used to update the synthetic data with a learning
rate η by minimizing the loss.

Figure 2: Flow diagram illustrates the steps involved in
generating a condensed dataset using distribution matching

3.4 Training Classifier

The Convolutional Neural Network is a well-known machine
learning approach used for image classification. In this work,
the ConvNet architecture [16] is employed, which consists of
blocks with a convolutional layer with W (3x3) filters, a
normalization layer N, an activation layer A, and a pooling layer
P, designated as [W, N, A, P]xD, with D duplicate blocks in
total. The ConvNet architecture comprises of N = 3 repeated
blocks, each of which contains a group normalization layer, a
ReLU activation layer, and a 128-kernel convolutional layer
with 3x3 filters. The linear classifier is placed after the final
block. During training, the weights of the ConvNet architecture
are initialized using the Kaiming initialization to accelerate
convergence, improve the stability of the training process, and
reduce overfitting. Additionally, the ConvNet is implemented
with Batch Normalization, which further helps in improving the
training and generalization performance.

4. Dataset Collection and Description

Figure 3: Sample images in the dataset
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The HyperKvasir dataset [14] is an improved version of the
Kvasir dataset making it a largest repository for GI tract
endoscopy images.

The data used in the study was collected during real colonoscopy
and gastroscopy procedures at Baerum Hospital in Norway, and
was partly labeled by expert gastrointestinal endoscopists.

The dataset consists of several categories that include both
pathological signs such as esophagitis, polyps, and ulcerative
colitis, as well as anatomical signs like z-line, pylorus, and
cecum. Additionally, there are typical signs like normal colon
mucosa and stool, along with cases where polyps were removed
after treatment, including dyed and lifted polyps and dyed
resection margins.

There are 23 classifications and 10,662 images on HyperKvasir.
The dataset includes 110,079 (10,662 labeled and 99,417
unlabeled images) images in total, representing both
pathological and normal findings as well as anatomical
landmarks. Figure 3 shows the sample of images in the dataset
and figure 4 shows the images per class for the labeled images in
original dataset before augmentation. Here, only labeled images
(110,079) are used for the dataset condensation. The dataset was
splitted to training, validation and testing set in ratio of
70/20/10.

Figure 4: Images per class for the labeled images in original
dataset

5. Results and Discussion

The objective of CAD (computer-aided diagnosis) systems is
to identify abnormal indicators more efficiently than a human
expert. This study aims to assist the CAD system in diagnosing
gastrointestinal disorders by creating a synthetic dataset from a
large dataset. Obtained output is condensed dataset which still is
informative. Here, the first step involves learning 1/5/10 images
per class synthetic sets using a ConvNet architecture [16].

The synthetic sets are used to train ConvNet from the beginning,
and their performance is assessed on real test data. Figure 5
displays the condensed dataset obtained for 10 images per class
with real image initialization, while figure 6 displays the
condensed image obtained from noise initialization. Figure 7
shows the visualisation for 5 images per class when batch
normalisation is implemented. In each experiment, a single
synthetic set is learned and used to train 5 randomly initialized
ConvNets. The average accuracy of the 5 trained networks is
displayed in all cases. The classification of gastrointestinal
image gave the accuracy of 85.31% on whole or original dataset.
The obtained accuracy can be considered as the upper bound or
maximum accuracy that can be achieved on the condensed

dataset as well.

Figure 5: Visualisation of condensed 10 images per class (real
image initialisation)

Figure 6: Visualisation of condensed 10 images per class (noise
initialisation)

Hyperparameters To generate 1, 5 and 10 images per class,
the number of iterations for learning synthetic data was set to
2000. The learning rate for updating synthetic images was set to
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1.0 with the batch size of 16 for both real and synthetic dataset.
Maximum mean discrepancy between the real and synthetic data
distribution was summed as matching loss with stochastic
gradient descent (SGD) as the optimizer to update synthetic set.
To evaluate the learned dataset, it was trained for 200 epochs
with a batch size of 16. The learning rate for updating network
parameters was set to 0.001 and the loss function used was
categorical cross entropy with the optimizer as stochastic
gradient descent (SGD).

Table 1: Performance of the number of images per class when
different initialization methods and batch normalisation(BN) are
used

ipc initialisation accuracy accuracy with BN
1 noise 30.63 % 31.91%
1 real 31.50 % 34.73%
5 noise 57.48% 60.25%
5 real 60.82 % 65.62%
10 noise 69.05% 73.59%
10 real 70.21% 75.13%

The results of the evaluation of the generated synthetic images
are presented in Table 1. The table displays the mean accuracy
of the synthetic images generated from both noise and real data
initialization for 1, 5, and 10 images per class. The table
provides a comparison between the accuracy of the synthetic
images generated from different initialization and number of
images per class. For 1, 5, 10 images per class, the accuracy of
the synthetic images generated from noise initialization is
30.63%, 57.48% and 69.05% without batch normalisation. It
can be seen that the accuracy has been increasing with the
increasing number of images per classes.

Qualitative Analysis of the results It can be visually
inspected that the synthetic images of the Gastrointestinal tract
dataset obtained from the noise initialisation contain noticeable
noise and unnatural strokes, while the synthetic images
generated from the real data are more clear and free of noise.
Additionally, the synthetic images of the GI tract dataset
obtained from the real data are more visually recognizable and
distinct.

Table 1 presents the comparison of the synthetic datasets
obtained for 1, 5 and 10 images per class when batch
normalization is utilized in the ConvNet model. It is evident that
the model with batch normalisation has a higher accuracy.
Additionally, with a higher number of images per class, the
accuracy increases, with 34.73% , 65.62% and 75.13% in 1, 5,
10 images per class respectively for initialisation from real
images with batch normalisation. The figure 7 depicts the
synthetic images generated when batch normalization was
applied to the convnet model while obtaining a condensed
dataset of 5 images per class initialized from real images.

Figure 7: Visualisation of condensed 5 ipc (BN)

6. Conclusions and Future Work

The study generated a condensed dataset of gastrointestinal
endoscopic images using feature distribution matching, which
can reduce computational complexity. The performance of this
condensed dataset was evaluated by applying a convolutional
neural network (CNN) for image classification, demonstrating
its potential for computer-assisted diagnosis of gastrointestinal
diseases. As a potential future improvement, the proposed
system could be validated using other datasets and real-time
endoscopic images which could improve the system’s reliability
and utility for detecting and treating digestive tract diseases.
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