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Abstract

Software-Defined Networking (SDN) is a modern networking approach that is flexible, manageable, cost-effective, and adaptable.
By decoupling the control plane from the data plane, SDN enables flexible network management. In a network, all traffic doesn’t
have same level of criticality and routing the traffic through different paths on basis of class of traffic helps in routing traffic among
components of the network, consequently improving the overall Quality of Service (QoS). In this paper, a comparative analysis of
KMeans Clustering, Logistic Regression, XGBoost, Classification and Regression Tree (CART) are done on basis of accuracy,
precision, recall and -1 score to find the best machine learning algorithm for classification of SDN traffic. The best model among all
i.e., Classification and Regression Tree (CART) is then used for real time traffic classification along with load balancing module of
Ryu controller for routing based on traffic class. The shortest path between source and destination is defined using Depth First
Search (DFS) algorithm. Secondary controllers are implemented to handle the overload problem on main controller. The overall
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system improves the QoS of overall network and also solves the reliability issue existing in a single controller network.
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1. Introduction

Categorizing network traffic is highly important within the field
of computer science, as is managing network performance for
Internet service providers (ISPs). The first step in identifying and
classifying unknown types of network traffic is to perform traffic
classification. Properly classifying network traffic is essential for
the effective functioning of network security and management
tools, such as load balancing and quality of service (QoS) [1].

1.1 Traffic Classification

The SDN controller can gather notification about the application
layer from traffic categorization. Depending on the application
being used, this information may be utilized to develop routing
and/or access policies. However, this operation must be carried
out in real-time to classify a flow based on just a few of its
initial packets. Port-based traffic classification was effective in
early days when each protocol used specific ports. However,
this port-based method is ineffective in current scenario as most
applications use dynamic port to avoid detection by intruders.

Payload-based method looks for the features and signatures of
network applications while examining the packet contents in
network traffic. The problem with this method is that it requires
expensive hardware for recognition of pattern and is not feasible
for encrypted network application traffic. Also, a continuous
update of signature pattern is required for this method to work
efficiently [2].

1.1.1 Machine Learning based classification

The use of traffic classification methodologies based on machine
learning has lately solved the drawbacks of traditional traffic
classification methods. ML-based approaches that are based on
statistics, such as packet length distribution and packet

inter-arrival duration, can identify between various applications.
The ultimate goal of ML-based techniques is the classification
of distinct applications or the grouping of traffic flows into
corresponding groups with comparable patterns. Comparatively
to solutions based on Deep Packet Inspection, ML-based
algorithms for identifying traffic can categorize encrypted
communication without the requirement to view packet contents
making it less expensive computationally.

The paper [3] talks about various machine learning approaches
like classification (supervised learning),  clustering
(unsupervised learning) and association that can be used for IP
traffic classification. In our work, machine learning approaches
like K-Means Clustering, Support Vector Machine (SVM),
Logistic Regression, XGBoost, Ordering Points to Identify the
Clustering Structure (OPTICS) and Classification And
Regression Tree (CART) were tested to find best method for
classification of SDN traffic.

K-Means Clustering is implemented to test if the datasets form
the desired cluster for each protocol name after dropping the
protocol from the dataset.

Other algorithms like SVM, Logistics Regression, XBoost,
OPTICS and CART are used as these algorithms are found to be
suitable to classify non-linear multi-class dataset in other
research works.

1.2 Traffic type based Load balancing

Load balancers are tasked with continuously distributing the
workload among all the components in the system in order to
improve system performance and resource utilization. The load
balancing algorithms discussed and analysed by the authors in
[4] are: Round-Robin, Least connection based, Agent adaptive,
Fixed Weighted, Weighted Response time, Source IP hash and
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Software Defined Networking (SDN) adaptive.

In our work, SDN adaptive load balancing algorithm is
implemented. This strategy makes use of both information about
the status of the network at bottom layers and understanding of
the upper network layers. The information of traffic type from
classification module is used to create the flow and group tables
which routes different traffic on different path leading to overall
balance of resource utilization in network along with reducing
the delay in transmission of traffic from source to destination.

1.3 Contribution

Most load balancing algorithms implemented in SDN are based
on throughput or CPU utilization and do not take into account the
incoming traffic type; as a result, they are unable to identify the
type of traffic that is important and critical for a given network

since not all incoming traffic has the same level of criticality.

Being able to route the traffic on different paths based on its type
allows to give the shortest path or path with minimum latency to
the type of traffic with highest criticality given the criticality of
traffic is pre-defined.

Thus, this study resolves real-time load balancing to enhance
network performance and system QoS as well as traffic
classification to identify vital traffic.

2. Background and Related Works

2.1 Need for traffic based load balancing

Due to increasing demand for large scale networks that can
process huge amounts of data efficiently and with negligible
latency, various attempts are made to improve network. One
attempt among all that has been a huge breakthrough is
implementation of SDN in place of traditional manual network
for ease in network management.

In real world scenario, all network traffics don’t have same level
of criticality, for example, voice and video traffic can hold higher
importance than other data traffic. Identification of type of traffic
supports in managing the resources and allocating it to the critical
application thus ensuring the improvement in QoS and stability
of system. Most existing load balancing techniques are based
on amount of incoming load or resource consumed but current
scenario demands a load balancing algorithm which can balance
and manage traffic based on traffic type dynamically.

2.2 Related Works

To speed up response time during the changing of rules in the
SDN flow table, Liao et al. [5] presented a dynamic
load-balancing technique. By using wildcard rules, the system
creates a flow table and keeps track of the servers in the SDN
network. To ensure that the server can execute the request by
redirecting it to other servers with light loads, the load balancer
switch notifies the controller to update the flow table if a target
server is at capacity.

Hailong et al. [6] implemented Equal Cost Multipath (ECMP)
routing as a successful load balancing strategy. When a packet
arrives at a switch or router, this approach employs a hash
algorithm to determine its header fields and then chooses one of

the forwarding paths based on the hash value. The scheduler
module directs traffic to underutilized links if the threshold is
crossed.

Packets with comparable headers are consequently sent on the
same routing. A major drawback of ECMP is that it will route
multiple huge, drawn-out data flows to the same output port if
they collide on their hash, which can result in a bottleneck.

However, Curtis et al. [7] used external backend server to detect
elephant flows. The Mahout scheduling mechanism technique
reduces packet overhead and latency. Two priority levels are
used in this process, and each level has a related rule in the flow
table. While elephant flows (high priority) traffic is directed to a
Mahout-based controller for optimal route calculation, low level
priority traffic was sent using the normal ECMP approach.

Mekky et al. [8] suggested a per-application flow metering
strategy utilizing the SDN architecture. Based on specific
application tables, applications were recognized in the data
plane and provided the relevant policies. The SDN control
channel’s overhead is reduced by this method. The investigation
discovered a considerable reduction in overhead and an increase
in application forwarding performance.

Jinghua et al. [9] compared various models that can be
implemented to perform traffic classification in software defined
networks and gave comments about them for future
implementation. Santos de Silva et al. classified DDoS, FTP,
and video traffic using support vector machines (SVM).
Although the algorithm provided fine-grained categorization, it
could not classify the traffic in real-time.

Similar to this, Pedro Amaral et al [10] implementation of
stochastic gradient boosting, extreme gradient boosting, and
random forest classifier to classify enterprise network traces was
also successful in classifying the traffic from dataset effectively,
but it was unsuccessful in doing so in real time. The author also
makes the argument that developing a dynamic traffic
classification algorithm that can adapt to the needs of future
networks is necessary in order to classify traffic in the future
with new incoming protocols.

3. Proposed Approach

In order to manage the load in the network, the traffic incoming
on all the controllers need to be monitored and analyzed. The
traffic is first monitored by the controller, features are extracted
and then the trained classification model classifies the incoming
data into various pre-defined classes. After the steps of traffic
engineering, the packets are forwarded to respective controllers
assigned for each traffic type and then the data is send to the
destination address based on the priority and queuing policies
defined in the controllers and switches.

The detailed SDN architecture with components of each layer
and their functionalities is show in figure 2.

1. Infrastructure layer: This layer basically consists of
OVS switches which are connected to the hosts. The
switches are connected to a control layer to send the
traffic to the controller and then receive commands from
the controller. Using the OpenFlow protocols, the
switches maintain the flow table and group table which
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Figure 1: Proposed methodology

.rApp Layer (Modules are programmed on Ryu controllers) :
: :
' i
' > :
' i
' Traffic i
H Classifier !
: :
Traffic and Load Switch and Links On/Off
Information Flow Table Update

Fuetaeietielieiefiefiediediifieliedifie el ittt
' Control Layer y '
' Ryu H
H O Controller '
' Y4\ :
: ! :
' i
: Control Network Nelwu_rk !
H Program Vizualization Operating H
' System '

il

South Bound Interface
(Openflow)

\Infrastructure Layer - :
: -, i
: l—._ — ;
H 1l
H 1l
' 1l
: - = .
H e ovs -, H
i - Switches - !
: :
H 1l
1

B E ==
i <+~ - - - :
H 1l
H 1l

Figure 2: SDN System Architecture

are responsible for handling the known traffic incoming
into the network from the hosts.

Control layer: The control plane of SDN, commonly
known as the controller, manages and programs
forwarding devices through the southbound interface. It
determines the routing of traffic in the network based on
application requirements and communicates the policies
to the data plane. The controller acts as the central brain
and network operating system in the network. It converts
application requirements such as QoS, traffic
prioritization, and bandwidth management into
forwarding rules that are sent to the forwarding elements
of the data plane network.

. App layer: This layer implements various applications of
the system like network monitor which monitors the
incoming traffic along with bytes count, time delay in
traffic and other parameters. Another application to be

implemented is traffic classifier that will implement
machine learning to classify the incoming traffic in real
time into various categories. The third application is load
balancing which re-routes the traffic incoming into the
network to the controller of choice based on its type.

3.1 Explanation of training dataset

Data on traffic flow was produced using the Distributed Internet
Traffic Generator (D-ITG) [11] application and utilized to train
machine learning models. D-ITG is a platform that can generate
both IPv4 and IPv6 traffic via precisely simulating the workload
of existing Internet applications.

The following traffic categories were employed for traffic
classification training dataset: Ping, Telnet, DNS, Voice, and
Video. Three classes were used for classification; Ping, Telnet,
and DNS traffic were placed in the ”Data” class, while voice and
video traffic were placed in the ”Voice” and ”Video” classes,
respectively. A sample of dataset is shown in table 1

Table 1: Training Dataset Sample

Forward Packets | Forward Average Packets/second | Reverse Packets | Traffic Type
454 1.166666667 507 Voice
790 0.923076923 1018 Voice
856 0.105691057 508 Data
856 0.10483871 508 Data
856 0.09352518 507 Video
1622 0.320512821 507 Video

The features of data that are extracted and used for training
purpose are shown in table 2. Some of the features are dropped
after feature selection during model training phase due to
irrelevance of feature in traffic classification.

Table 2: Features used for traffic classification

Feature Label Feature

Delta Forward Packets

Delta Forward Bytes

Forward Instantaneous Packets per Second
Forward Average Packets per second
Forward Instantaneous Bytes per Second
Forward Average Bytes per second

Delta Reverse Packets

Delta Reverse Bytes

Delta Reverse Instantaneous Packets per Second
Reverse Average Packets per second
Reverse Instantaneous Bytes per Second
Reverse Average Bytes per second

— =0 0 N AW = O

- O

3.2 Working Principle

The detailed explanation on how the network traffic classifier
and load balancer module of the controller work is described as
follows. When a new packet arrives into the network, the first
switch checks if there is a matched flow entry in the flow table. If
there is, the packet is sent directly to destination without calling
in the controller. This reduces overload on controller. If there
is no flow entry, the packet is sent to controller, the controller
extracts the features from the packet to predict the traffic type
and returns a queue ID based on type. If a packet is not classified,
it is given default less priority queue.

The queue ID is then associated with output port in flow entry by
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the controller which determines, if the packet is sent through the
same controller or sent through another controller. Lastly, flow is

added into each switch’s flow table for that particular data path.

The switches have the ability to accept additional packets from
the same flow and route them with a predefined protocol to their
destination.

3.3 Experimental Setup

To evaluate the working and performance of the proposed model,

a virtual network is emulated using mininet [12] as topology
emulator, Ryu [13, 14] as the controller responsible for
performing duties of traffic classification and take load
balancing decision. Open vSwitch [15] is used as switching
element which maintains flow tables and group tables of various
rules implemented for routing specific type of traffic to specific
path.

The network consists of a Ryu controllers, six switches and
three hosts (one sender and two receiver as shown in figure 3.
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Figure 3: Topology used for network simulation

The Ryu framework, which serves as the SDN controller, is
intended to operate on a host computer while having a TCP
connection to the Mininet network topology that is being
simulated. The three paths are used for video, voice and data
traffic respectively.

4. Result and Analysis
4.1 Comparison of classification models on generated
dataset

Table 3 discusses about evaluation of various machine learning
algorithm on basis of different parameters while figure 4
demonstrates comparative plot of these algorithms.

Table 3: Measure of traffic classification on generated dataset

ML Algorithm Accuracy (%) Precision (%) Recall (%) F-1Score (%)
K-Means Clustering 32 27 26 26
Support Vector Machine (SVM) 82 85 82 81
Logistic Regression 63 63 63 62
XGBoost 91 94 94 94
OPTICS 56 49 51 51
Decision Tree 98 99 929 99

Measure of traffic classification on own dataset
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Figure 4: Evaluated result of different algorithms for training
dataset

From above results, it is observed that K-means clustering has
worst result on all parameters. This is because K-means
clustering implies better on spherical and equal-sized cluster
data, whereas our data is non-linear in shape and also different
class does not form equal-sized cluster. As a result, during
multi-class classification, K-means is unable to reflect the
fundamental structure of the data as well as the class boundaries.

The best classification report is given by decision tree classifier
(CART) algorithm. CART algorithm is most suitable for multi-
class classification as shown by accuracy, precision, recall and
F-1 score of all traffic types. Decision trees are a straightforward,
quick, and efficient solution for multi-class classification issues.

The execution time of each machine learning algorithm in
classification of dataset with almost 21000 data is shown in
figure 5 From above graph, it is seen that decision tree (CART)

Execution time of different ML Algorithms
14
12
10

Execution Time (in seconds)

K-Means SVM Logistic XGBoost QPTICS Decision
Regression Tree

ML Algorithms

Figure 5: Execution time of different ML algorithms

has least execution time of 5 seconds whereas Logistic
Regression has highest execution time of 13 seconds.

4.2 Comparison of classification models on kaggle
dataset

While comparing the classification model on a dataset with 87
features and over 3.5 million instances [16], the following result
were obtained. 5
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Figure 6: Evaluated results of algorithms for kaggle dataset

The graph 6 demonstrates that decision tree (CART) algorithm
outperforms other algorithms in terms of accuracy, precision,
recall and F-1 score which further justifies outcome of
classification on generated dataset and validates the application
of use of CART algorithm for classification purpose. On testing
the CART algorithm on both the generated dataset and kaggle
dataset while keeping the features set the same, it performs
better than other algorithms which ensures that CART will
always classify any multi-class non-linear dataset most
efficiently.

4.3 Evaluation of load balancing

The figure 7 demonstrates the the advantage of load balancing
in improving the performance of network by comparing bit-rate
and packet rate.
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Figure 7: Evaluated result of different algorithms for training
dataset

While running the classification and load balancing module in
tandem for one minute and sending all three types of traffic,
namely voice, video and data, it is observed that bit-rate and
packet-rate is improved by almost 3 times suggesting large
amount of traffic can be sent using same resource in short period
of time by implementing traffic based load balancing.

Also, Jitter monitors the variance in packet latency as it travels
over the network. A network’s jitter is reduced with improved
load balancing, which enhances the QoS for real-time
applications like voice and video as seen in figure 8.
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Figure 8: Comparison of jitter after load balancing

The average jitter is reduced from 0.000027 seconds to 0.000019
seconds after application of classification based load balancing
for first 16 flows of traffic comprising voice, video and data. The
trend shows that jitter will always be low for network with load
balancer rather than network without load balancer.

5. Conclusion

The traffic classification algorithms were implemented on two
datasets, i.e., generated dataset using D-ITG tool and kaggle
dataset. For implementing the model for real-time traffic
classification, the model was first trained using a quantitative
multi-class dataset. The dataset is first prepared by removing
null values and re-sampling the dataset to prevent from
over-fitting to a particular traffic type.Then the relevant features
were selected as shown in table 2. After selection of features,
ML models were trained using the processed dataset and all the
models were evaluated on accuracy, precision, recall and f-1
score. While comparing all algorithms, CART decision tree was
found to be best algorithm. The execution time of CART
algorithm was also found to be minimum. Also, after the
application of traffic type based load balancing in network, the
bit-rate, packet-rate was highly increased and latency was
reduced enough to conclude that load balancing in software
defined networking, especially traffic based, improves the QoS
of a network. Hence, traffic classification based load balancing
with application of CART decision tree for classification helps
to improve performance of network.

6. Limitation and Future Work

The scope of this research was that the study was only on the
application and evaluation of supervised and unsupervised
machine learning algorithms. Also, the load balancing was only
performed between the switches using single controller. The
tool, D-ITG is only capable of generating few types of data.
Further research and implementation can be done by application
of semi-supervised and deep learning approach for traffic
classification.

Also, load balancing between multiple controllers can be done
to further improve QoS of the system. Also, a larger Mininet
generated dataset with more traffic types would yield some
enlightening results for categorization and traffic-based load
balancing.
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