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Abstract

Neural networks have been widely used in various fields, including fluid dynamics, to predict complex phenomena that are difficult to
model analytically. In this research, a neural network is developed to predict the path taken by a circular body in a two-dimensional
fluidic domain. The study involves simulating the potential flow over a rectangular domain inside which a circular body is placed.
Fluctuations in different parameters such as pressure, forces, and velocity field during the motion of the body are studied. The
Laplace equation is solved at each time step by applying the techniques of finite element method ( FEM) to obtain accurate data,
which is fed into the neural network. The neural network comprises of three layers input , middle and output layer. The study is
carrried out using computational methods that relies on open-source software Python and its modules like NumPy. The results of
the neural network’s predictions are compared with accurate data to analyze the error. Fluctutaion of error with respect to different
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hyperparameters of the network is calculated and accordingly suitable hyperparameters of the network are determined.

1. Introduction

Fluid dynamics field involves solving set of Partial Differential
Equations (PDE) for understanding the behavior of fluids. Most
of the problems in fluid dynamics are complicated and difficult
to solve. In most cases, these equations cannot be solved
analytically. While experimental methods can be used for
accurate results, they are expensive and require specialized
facilities. As a result, computational methods have become
popular, such as Finite Element Method (FEM) and Finite
Difference Method (FDM). These methods transform complex
differential equations into algebraic equations, which can be
solved with the help of computers [1]. A newer method that
combines modern numerical techniques and high-speed digital
computers is the use of neural networks to solve PDEs. [2]

In this research, the focus is on development and use of neural
networks to predict the path of a circular body in a fluidic
domain by solving the Laplace equation at each time step and
feeding the obtained data into a neural network . The two
dimensional fluid domain is assumed to be inviscid,
incompressible and irrotational. The neural network is based on
gradient descent algorithm and is able to predict the path of the
body given its initial location in two dimensional domain [3] .
Data is generated by numerically solving laplace equation [4]
using the techniques of finite element method (FEM), thus
simulating a potential flow over the rectangular domain and
analyzing fluctuations in different parameters during motion of
the body. Evaluation of the error between the actual and
predicted path by the network is also carried out and finally,
hyperparameters of the network are tweaked accordingly to
minimise error in the network.

2. Research Methodology

The study was divided into two parts: Calculation of field
information using finite element method (FEM) and
development of the neural network. Both analysis are carried
out in Python [5] using python module like Numpy [6]. In FEM,
strong form and weak form of the governing equations are
developed and are applied to each cell of the mesh tranforming
the PDE into the set of algebraic linear equations. For
incompressible, inviscid, and steady state irrotational flow,
governing equations [7] for fluid flow are given by equation 1
and equation 2.

V2¢ =0 withV =V (1)
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Once the input parameter of the problem are specified in the
program, the program creates a rectangular flow domain, and a
mesh is generated over it. After the users input all the required
information, like boundary and wall condition, the program
prepares the mesh structure, applies the wall and boundary
condition to solve the problem and obtain solution of the
potential function ¢(x,y). The technique of finite element
method (FEM) is used to obtain this solution [8]. Such solution
of the potential fucntion ¢(X, y) is calculated by varying the
location of the object throughout the domain. After obtaining
the solution of the Laplace equation, the gradient V is applied to
potential fucntion ¢ (x,y) to obtain the velocity field information.
The techniques of the Finite Difference Method (FDM) (Second
Order) method are used to calculate the involved derivatives [9].
From the velocity field, the distribution of pressure is calculated
throughout the domain using equation 2. The obtained data are
stored, which will be further used to calculate actual trajectory

Pages: 87 - 90



Development of a Neural Network to Predict Path of an Object in a Two-Dimensional Potential Flow

Start
k4
' ~
Input Velocity and
Bes
L% I A
-
Develop Mesh
\ r,
k.
( N
Apply FEM
T3
'd e
Get Solution for Field
Variables
. A
Store
p
.| Develop Neural
- MNetwork
' J
g ¢ ™
Make Prediction
LN S
v
Analyse Error and
Tweak Parameters

Figure 1: Methodology chart

of the body and later by a neural network for correcting its
weights and biases for prediction purpose.

The next section involves the development of the three layered
neural network i.e input, output and middle layer [10]. The stored
data is divided into feed and test data, and the neural network
is constructed by using the gradient descent algorithm. The
predicted result for a given set of test data by the trained neural
network is computed. Finally, the predicted path is compared
against the actual path, and the observed errors are analyzed by

varying various parameters of the neural network like learning
rate, number of neurons in middle layer and number of data in
the dataset.

3. Results

3.1 Development of the mesh

The region between the circle and the rectangular domain are
meshed using triangular meshes, where each mesh cell can be
represented in Python by a list of three tuples [11]. In addition,
the object within the domain is placed at different locations, and
meshes are created for each of these as well. This is necessary
in order to accurately calculate the trajectory of each object,
taking into account its position and movement within the meshed
domain. The length and breadth of the rectangular domain is
taken to be 1m each and radius of the body is taken as 0.1m.
Such meshes are shown in figure 2.
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Figure 2: Mesh for different locations

3.2 Velocity Field

After applying the weak form of the governing equation to each
cell in the mesh, one obtains the algebraic linear equation for
the potential ¢ (x,y) function. Solving the linear equation gives
the solution of potential function ¢ (x,y) over the whole domain.
Taking its gradient, the velocity field information is obtained.
One such velocity field graph is shown for a specific location.
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Figure 3: Velocity Field
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Table 1: Path Co-ordinate table

S.N | Start Position Path Co-ordinates
1 (0.2,0.2) (0.25,0.28),(0.31,0.5),(0.41,0.68)
2 (0.5,0.3) (0.56,0.72),(0.83,0.53),(0.94,0.64)
3 (0.6,0.4) (0.61,0.43),(0.64,0.50),(0.67,0.58)

3.3 Force and Path Trajectory

The pressure around the perimeter of the circular body is
calculated via equation 2. The initial condition of the pressure is
assumed to be at atmospheric pressure at the outlet. Integrating
this pressure values along the perimeter of the body gives the
force and acceleration experienced by the body at a specific
location. Basic kinematic equations are used recursively to
obtain the path co-ordinates of the body.

3.4 Mean Square Error (MSE)

In neural networks, Mean Squared Error (MSE) [12] is a
commonly used metric to evaluate the performance of the model.
It measures the average squared difference between the
predicted output and the actual output over all the samples in the
dataset.

3.4.1 MSE vs Learning rate

The key step in optimizing the performance of the network is
by seeing how MSE varies with different learning rate for the
network. Learning rate is a hyperparameter of the network that
determines the step size taken in the direction of the negative
gradient during neural network training. By monitoring the MSE
during training with different learning rates, one can determine
an optimal learning rate that leads to the best performance on the
given dataset.
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Figure 4: MSE vs Learning Rate

Figure 4 shows that MSE is minimum and stable when learning
rate is in the range of 1.6-3.5. Thus learning rate of 2 is employed
in the network. Learning rate fluctuates beyond the value of 3.5
which implies selection of learning rate from this region has
chances of incurring high MSE for a random sample dataset.

3.4.2 MSE vs Number of Neurons

To understand the impact of the number of neurons present in
the middle layer on the network performance, an examination of
how the MSE varies with different numbers of neurons is carried
out. A random shuffle of the dataset is done by selecting 80
percent of the data and calculating MSE vs number of neurons
in middle layer for various dataset.
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Figure 5: MSE vs Number of Neurons

Figure 5 shows that MSE is minimum, when number of neurons
in middle layer is in the region of 10. Minimum of MSE also
occurs at other values but higher number of neuron will imply
higher computational time by the network. Thus, number of
neurons in the middle layer is selected to be in the range of 8-12.

3.4.3 MSE vs Number of Dataset

An analysis on the impact of dataset size on model performance
is calculated by noting how MSE varies for different numbers
of data samples through which one can determine the minimum
amount of data required for the model to achieve acceptable
performance.
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Figure 6: MSE vs Number of Data samples

Figure 6 shows that this number is in range of 2000 for the
network.

4. Conclusion

Based on the numerical calculation of the research, a neural
network capable of predicting path of an object in potential flow
has been developed. Additionally, the optimal values for
hyperparameters of the network are calculated. This
hyperparameters range can guide guide the design of future
neural network models for similar problems. The development
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of the neural network required numerical computation of the
velocity and pressure fields, and the resulting model provides
faster results compared to numerically solving the governing
equations. These findings suggest that neural networks can be a
valuable tool for accelerating the design and optimization of
fluid dynamic systems. Overall, this research has demonstrated
the potential of neural networks in predicting the path of an
object in a potential flow, and provides a foundation for future
research in this area.
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